
WiSe 2023/24, Heidelberg University

Introduction
L1, Structural Bioinformatics

Structural Bioinformatics

Structural Bioinformatics

Structural Bioinformatics

Source: Wikipedia.org

Overview

1. A Brief History of the Field

2. Where we are and where we are headed

3. This course

4. To-Dos for you!

19
60
s

19
80
s

20
00
s

19
70
s

19
90
s

Where do we come from?
Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019,
Pages 1981–1996, https://doi.org/10.1093/bib/bby063

https://doi.org/10.1093/bib/bby063

19
60
s

PROTEIN SEQUENCE
ASSEMBLY+ALIGNMENT
Edman Sequencing, Dayhoff,
Needleman-Wunsch (1970) 19

80
s

20
00
s

19
70
s

19
90
s

Where do we come from?
Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019,
Pages 1981–1996, https://doi.org/10.1093/bib/bby063

https://doi.org/10.1093/bib/bby063

19
60
s

PROTEIN SEQUENCE
ASSEMBLY+ALIGNMENT
Edman Sequencing, Dayhoff,
Needleman-Wunsch (1970) 19

80
s

20
00
s

19
70
s

THE SHIFT
TO DNA
Sanger Sequencing,
Phylogenetics 19

90
s

Where do we come from?
Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019,
Pages 1981–1996, https://doi.org/10.1093/bib/bby063

https://doi.org/10.1093/bib/bby063

19
60
s

PROTEIN SEQUENCE
ASSEMBLY+ALIGNMENT
Edman Sequencing, Dayhoff,
Needleman-Wunsch (1970) 19

80
s

THE PC MOVEMENT
Open-source, Journals,
Perl&Python 20

00
s

19
70
s

THE SHIFT
TO DNA
Sanger Sequencing,
Phylogenetics 19

90
s

Where do we come from?
Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019,
Pages 1981–1996, https://doi.org/10.1093/bib/bby063

https://doi.org/10.1093/bib/bby063

19
60
s

PROTEIN SEQUENCE
ASSEMBLY+ALIGNMENT
Edman Sequencing, Dayhoff,
Needleman-Wunsch (1970) 19

80
s

THE PC MOVEMENT
Open-source, Journals,
Perl&Python 20

00
s

19
70
s

THE SHIFT
TO DNA
Sanger Sequencing,
Phylogenetics 19

90
s

WWW, GENOMES &
STRUCTURES
Human Genome, Swiss-Prot,
NCBI, Webtools

Where do we come from?
Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019,
Pages 1981–1996, https://doi.org/10.1093/bib/bby063

https://doi.org/10.1093/bib/bby063

19
60
s

PROTEIN SEQUENCE
ASSEMBLY+ALIGNMENT
Edman Sequencing, Dayhoff,
Needleman-Wunsch (1970) 19

80
s

THE PC MOVEMENT
Open-source, Journals,
Perl&Python 20

00
s

HIGH THROUGHPUT
NGS, Compute Clusters,
PDB 3000 -> 8000 entries

19
70
s

THE SHIFT
TO DNA
Sanger Sequencing,
Phylogenetics 19

90
s

WWW, GENOMES &
STRUCTURES
Human Genome, Swiss-Prot,
NCBI, Webtools

Where do we come from?
Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019,
Pages 1981–1996, https://doi.org/10.1093/bib/bby063

https://doi.org/10.1093/bib/bby063

Where are we today?
Achievements in Structural Bioinformatics (2014)

Bioinformatics, Volume 31, Issue 1, January 2015, Pages 146–150, https://doi.org/10.1093/bioinformatics/btu769.

https://doi.org/10.1093/bioinformatics/btu769

What are the question we ask?
And how can we answer them?

Feenstra & Abeln, 2014-2023 Intro Prot Struc Bioinf

Protein Structure
Prediction
AlphaFold2

Sequence Alignments
Structure Alignments

Classification

MD Simulations
Protein Design

What are the question we ask?
And how can we answer them?

Feenstra & Abeln, 2014-2023 Intro Prot Struc Bioinf

Protein Engineering

Docking
Drug Design

Inverse Folding
Protein Design

What are the tools at our disposal?
PreStO

http://bioinfo.dcc.ufmg.br/presto/

This course
What will we talk about?

This course

Know your tools
Pymol – Python - Proteins

To-Dos for you!

1. Enter the Discord server

2. Install Pymol

3. Read the Python Post and do Google Colab Intro

4. Do the first exercises!

https://kdidi.netlify.app/blog/programming/2022-11-03-python-dsintro/

WiSe 2023/24, Heidelberg University
Kieran Didi

Math Primer 1: Linear Algebra
L1, Structural Bioinformatics

Overview

1. A Brief History of the Field

2. Where we are and where we are headed

3. This course

4. To-Dos for you!

(Goodfellow 2016)

Scalars
• A scalar is a single number

• Integers, real numbers, rational numbers, etc.

• We denote it with italic font:

a, n, x

(Goodfellow 2016)

Vectors
• A vector is a 1-D array of numbers:

• Can be real, binary, integer, etc.

• Example notation for type and size:

CHAPTER 2. LINEAR ALGEBRA

example, we might say “Let s 2 R be the slope of the line,” while defining a
real-valued scalar, or “Let n 2 N be the number of units,” while defining a
natural number scalar.

• Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lower case names written in bold typeface, such
as x. The elements of the vector are identified by writing its name in italic
typeface, with a subscript. The first element of x is x1, the second element
is x2 and so on. We also need to say what kind of numbers are stored in
the vector. If each element is in R, and the vector has n elements, then the
vector lies in the set formed by taking the Cartesian product of R n times,
denoted as Rn. When we need to explicitly identify the elements of a vector,
we write them as a column enclosed in square brackets:

x =

2

6664

x1

x2
...

xn

3

7775
. (2.1)

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.
Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access x1, x3 and x6, we define the set S = {1, 3, 6} and write
xS . We use the � sign to index the complement of a set. For example x�1 is
the vector containing all elements of x except for x1, and x�S is the vector
containing all of the elements of x except for x1, x3 and x6.

• Matrices: A matrix is a 2-D array of numbers, so each element is identified by
two indices instead of just one. We usually give matrices upper-case variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A 2 Rm⇥n. We usually identify
the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A1,1 is the upper
left entry of A and Am,n is the bottom right entry. We can identify all of
the numbers with vertical coordinate i by writing a “:” for the horizontal
coordinate. For example, Ai,: denotes the horizontal cross section of A with
vertical coordinate i. This is known as the i-th row of A. Likewise, A:,i is

32

CHAPTER 2. LINEAR ALGEBRA

example, we might say “Let s 2 R be the slope of the line,” while defining a
real-valued scalar, or “Let n 2 N be the number of units,” while defining a
natural number scalar.

• Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lower case names written in bold typeface, such
as x. The elements of the vector are identified by writing its name in italic
typeface, with a subscript. The first element of x is x1, the second element
is x2 and so on. We also need to say what kind of numbers are stored in
the vector. If each element is in R, and the vector has n elements, then the
vector lies in the set formed by taking the Cartesian product of R n times,
denoted as Rn. When we need to explicitly identify the elements of a vector,
we write them as a column enclosed in square brackets:

x =

2

6664

x1

x2
...

xn

3

7775
. (2.1)

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.
Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access x1, x3 and x6, we define the set S = {1, 3, 6} and write
xS . We use the � sign to index the complement of a set. For example x�1 is
the vector containing all elements of x except for x1, and x�S is the vector
containing all of the elements of x except for x1, x3 and x6.

• Matrices: A matrix is a 2-D array of numbers, so each element is identified by
two indices instead of just one. We usually give matrices upper-case variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A 2 Rm⇥n. We usually identify
the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A1,1 is the upper
left entry of A and Am,n is the bottom right entry. We can identify all of
the numbers with vertical coordinate i by writing a “:” for the horizontal
coordinate. For example, Ai,: denotes the horizontal cross section of A with
vertical coordinate i. This is known as the i-th row of A. Likewise, A:,i is

32

(Goodfellow 2016)

Matrices

• A matrix is a 2-D array of numbers:

• Example notation for type and shape:

CHAPTER 2. LINEAR ALGEBRA

A =

2

4
A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

3

5) A
> =


A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

�

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:


A1,1 A1,2

A2,1 A2,2

�
. (2.2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f(A)i,j gives element (i, j)
of the matrix computed by applying the function f to A.

• Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, j, k)
by writing Ai,j,k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as A

>, and it is defined such that

(A>)i,j = Aj,i. (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we

33

CHAPTER 2. LINEAR ALGEBRA

example, we might say “Let s 2 R be the slope of the line,” while defining a
real-valued scalar, or “Let n 2 N be the number of units,” while defining a
natural number scalar.

• Vectors: A vector is an array of numbers. The numbers are arranged in
order. We can identify each individual number by its index in that ordering.
Typically we give vectors lower case names written in bold typeface, such
as x. The elements of the vector are identified by writing its name in italic
typeface, with a subscript. The first element of x is x1, the second element
is x2 and so on. We also need to say what kind of numbers are stored in
the vector. If each element is in R, and the vector has n elements, then the
vector lies in the set formed by taking the Cartesian product of R n times,
denoted as Rn. When we need to explicitly identify the elements of a vector,
we write them as a column enclosed in square brackets:

x =

2

6664

x1

x2
...

xn

3

7775
. (2.1)

We can think of vectors as identifying points in space, with each element
giving the coordinate along a different axis.
Sometimes we need to index a set of elements of a vector. In this case, we
define a set containing the indices and write the set as a subscript. For
example, to access x1, x3 and x6, we define the set S = {1, 3, 6} and write
xS . We use the � sign to index the complement of a set. For example x�1 is
the vector containing all elements of x except for x1, and x�S is the vector
containing all of the elements of x except for x1, x3 and x6.

• Matrices: A matrix is a 2-D array of numbers, so each element is identified by
two indices instead of just one. We usually give matrices upper-case variable
names with bold typeface, such as A. If a real-valued matrix A has a height
of m and a width of n, then we say that A 2 Rm⇥n. We usually identify
the elements of a matrix using its name in italic but not bold font, and the
indices are listed with separating commas. For example, A1,1 is the upper
left entry of A and Am,n is the bottom right entry. We can identify all of
the numbers with vertical coordinate i by writing a “:” for the horizontal
coordinate. For example, Ai,: denotes the horizontal cross section of A with
vertical coordinate i. This is known as the i-th row of A. Likewise, A:,i is

32

Column

Row

(Goodfellow 2016)

Tensors
• A tensor is an array of numbers, that may have

• zero dimensions, and be a scalar

• one dimension, and be a vector

• two dimensions, and be a matrix

• or more dimensions.

(Goodfellow 2016)

Matrix Transpose
CHAPTER 2. LINEAR ALGEBRA

A =

2

4
A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

3

5) A
> =


A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

�

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:


A1,1 A1,2

A2,1 A2,2

�
. (2.2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f(A)i,j gives element (i, j)
of the matrix computed by applying the function f to A.

• Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, j, k)
by writing Ai,j,k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as A

>, and it is defined such that

(A>)i,j = Aj,i. (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we

33

CHAPTER 2. LINEAR ALGEBRA

A =

2

4
A1,1 A1,2

A2,1 A2,2

A3,1 A3,2

3

5) A
> =


A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

�

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

the i-th column of A. When we need to explicitly identify the elements of a
matrix, we write them as an array enclosed in square brackets:


A1,1 A1,2

A2,1 A2,2

�
. (2.2)

Sometimes we may need to index matrix-valued expressions that are not just
a single letter. In this case, we use subscripts after the expression, but do
not convert anything to lower case. For example, f(A)i,j gives element (i, j)
of the matrix computed by applying the function f to A.

• Tensors: In some cases we will need an array with more than two axes. In
the general case, an array of numbers arranged on a regular grid with a
variable number of axes is known as a tensor. We denote a tensor named “A”
with this typeface: A. We identify the element of A at coordinates (i, j, k)
by writing Ai,j,k.

One important operation on matrices is the transpose. The transpose of a
matrix is the mirror image of the matrix across a diagonal line, called the main
diagonal, running down and to the right, starting from its upper left corner. See
Fig. 2.1 for a graphical depiction of this operation. We denote the transpose of a
matrix A as A

>, and it is defined such that

(A>)i,j = Aj,i. (2.3)

Vectors can be thought of as matrices that contain only one column. The
transpose of a vector is therefore a matrix with only one row. Sometimes we

33

CHAPTER 2. LINEAR ALGEBRA

Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B + C) = AB + AC. (2.6)

It is also associative:
A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x
>
y = y

>
x. (2.8)

The transpose of a matrix product has a simple form:

(AB)> = B
>
A

>. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

x
>
y =

⇣
x

>
y

⌘>
= y

>
x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax = b (2.11)

where A 2 Rm⇥n is a known matrix, b 2 Rm is a known vector, and x 2 Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A1,:x = b1 (2.12)

A2,:x = b2 (2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A1,1x1 + A1,2x2 + · · · + A1,nxn = b1 (2.16)
35

(Goodfellow 2016)

Matrix (Dot) Product

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x1, x2, x3]>.

A scalar can be thought of as a matrix with only a single entry. From this, we
can see that a scalar is its own transpose: a = a>.

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m ⇥ n and B is of shape n ⇥ p, then C is of shape m ⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =
X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A � B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x

>
y. We can think of the matrix product C = AB as computing

Ci,j as the dot product between row i of A and column j of B.

34

= •m

p

m

p
n

n

Must
match

CHAPTER 2. LINEAR ALGEBRA

define a vector by writing out its elements in the text inline as a row matrix,
then using the transpose operator to turn it into a standard column vector, e.g.,
x = [x1, x2, x3]>.

A scalar can be thought of as a matrix with only a single entry. From this, we
can see that a scalar is its own transpose: a = a>.

We can add matrices to each other, as long as they have the same shape, just
by adding their corresponding elements: C = A + B where Ci,j = Ai,j + Bi,j .

We can also add a scalar to a matrix or multiply a matrix by a scalar, just
by performing that operation on each element of a matrix: D = a · B + c where
Di,j = a · Bi,j + c.

In the context of deep learning, we also use some less conventional notation.
We allow the addition of matrix and a vector, yielding another matrix: C = A + b,
where Ci,j = Ai,j + bj . In other words, the vector b is added to each row of the
matrix. This shorthand eliminates the need to define a matrix with b copied into
each row before doing the addition. This implicit copying of b to many locations
is called broadcasting.

2.2 Multiplying Matrices and Vectors

One of the most important operations involving matrices is multiplication of two
matrices. The matrix product of matrices A and B is a third matrix C. In order
for this product to be defined, A must have the same number of columns as B has
rows. If A is of shape m ⇥ n and B is of shape n ⇥ p, then C is of shape m ⇥ p.
We can write the matrix product just by placing two or more matrices together,
e.g.

C = AB. (2.4)

The product operation is defined by

Ci,j =
X

k

Ai,kBk,j . (2.5)

Note that the standard product of two matrices is not just a matrix containing
the product of the individual elements. Such an operation exists and is called the
element-wise product or Hadamard product, and is denoted as A � B.

The dot product between two vectors x and y of the same dimensionality is the
matrix product x

>
y. We can think of the matrix product C = AB as computing

Ci,j as the dot product between row i of A and column j of B.

34

(Goodfellow 2016)

Identity Matrix
CHAPTER 2. LINEAR ALGEBRA

2

4
1 0 0
0 1 0
0 0 1

3

5

Figure 2.2: Example identity matrix: This is I3.

A2,1x1 + A2,2x2 + · · · + A2,nxn = b2 (2.17)

. . . (2.18)

Am,1x1 + Am,2x2 + · · · + Am,nxn = bm. (2.19)

Matrix-vector product notation provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrix inversion that allows us to
analytically solve Eq. 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as In. Formally, In 2 Rn⇥n, and

8x 2 Rn, Inx = x. (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.

The matrix inverse of A is denoted as A
�1, and it is defined as the matrix

such that
A

�1
A = In. (2.21)

We can now solve Eq. 2.11 by the following steps:

Ax = b (2.22)

A
�1

Ax = A
�1

b (2.23)

Inx = A
�1

b (2.24)

36

CHAPTER 2. LINEAR ALGEBRA

2

4
1 0 0
0 1 0
0 0 1

3

5

Figure 2.2: Example identity matrix: This is I3.

A2,1x1 + A2,2x2 + · · · + A2,nxn = b2 (2.17)

. . . (2.18)

Am,1x1 + Am,2x2 + · · · + Am,nxn = bm. (2.19)

Matrix-vector product notation provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrix inversion that allows us to
analytically solve Eq. 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as In. Formally, In 2 Rn⇥n, and

8x 2 Rn, Inx = x. (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.

The matrix inverse of A is denoted as A
�1, and it is defined as the matrix

such that
A

�1
A = In. (2.21)

We can now solve Eq. 2.11 by the following steps:

Ax = b (2.22)

A
�1

Ax = A
�1

b (2.23)

Inx = A
�1

b (2.24)

36

(Goodfellow 2016)

Systems of Equations

CHAPTER 2. LINEAR ALGEBRA

Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B + C) = AB + AC. (2.6)

It is also associative:
A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x
>
y = y

>
x. (2.8)

The transpose of a matrix product has a simple form:

(AB)> = B
>
A

>. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

x
>
y =

⇣
x

>
y

⌘>
= y

>
x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax = b (2.11)

where A 2 Rm⇥n is a known matrix, b 2 Rm is a known vector, and x 2 Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A1,:x = b1 (2.12)

A2,:x = b2 (2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A1,1x1 + A1,2x2 + · · · + A1,nxn = b1 (2.16)
35

expands to

CHAPTER 2. LINEAR ALGEBRA

Matrix product operations have many useful properties that make mathematical
analysis of matrices more convenient. For example, matrix multiplication is
distributive:

A(B + C) = AB + AC. (2.6)

It is also associative:
A(BC) = (AB)C. (2.7)

Matrix multiplication is not commutative (the condition AB = BA does not
always hold), unlike scalar multiplication. However, the dot product between two
vectors is commutative:

x
>
y = y

>
x. (2.8)

The transpose of a matrix product has a simple form:

(AB)> = B
>
A

>. (2.9)

This allows us to demonstrate Eq. 2.8, by exploiting the fact that the value of
such a product is a scalar and therefore equal to its own transpose:

x
>
y =

⇣
x

>
y

⌘>
= y

>
x. (2.10)

Since the focus of this textbook is not linear algebra, we do not attempt to
develop a comprehensive list of useful properties of the matrix product here, but
the reader should be aware that many more exist.

We now know enough linear algebra notation to write down a system of linear
equations:

Ax = b (2.11)

where A 2 Rm⇥n is a known matrix, b 2 Rm is a known vector, and x 2 Rn is a
vector of unknown variables we would like to solve for. Each element xi of x is one
of these unknown variables. Each row of A and each element of b provide another
constraint. We can rewrite Eq. 2.11 as:

A1,:x = b1 (2.12)

A2,:x = b2 (2.13)

. . . (2.14)

Am,:x = bm (2.15)

or, even more explicitly, as:

A1,1x1 + A1,2x2 + · · · + A1,nxn = b1 (2.16)
35

(Goodfellow 2016)

Solving Systems of
Equations

• A linear system of equations can have:

• No solution

• Many solutions

• Exactly one solution: this means multiplication by
the matrix is an invertible function

(Goodfellow 2016)

Matrix Inversion
• Matrix inverse:

• Solving a system using an inverse:

• Numerically unstable, but useful for abstract
analysis

CHAPTER 2. LINEAR ALGEBRA

2

4
1 0 0
0 1 0
0 0 1

3

5

Figure 2.2: Example identity matrix: This is I3.

A2,1x1 + A2,2x2 + · · · + A2,nxn = b2 (2.17)

. . . (2.18)

Am,1x1 + Am,2x2 + · · · + Am,nxn = bm. (2.19)

Matrix-vector product notation provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrix inversion that allows us to
analytically solve Eq. 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as In. Formally, In 2 Rn⇥n, and

8x 2 Rn, Inx = x. (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.

The matrix inverse of A is denoted as A
�1, and it is defined as the matrix

such that
A

�1
A = In. (2.21)

We can now solve Eq. 2.11 by the following steps:

Ax = b (2.22)

A
�1

Ax = A
�1

b (2.23)

Inx = A
�1

b (2.24)

36

CHAPTER 2. LINEAR ALGEBRA

2

4
1 0 0
0 1 0
0 0 1

3

5

Figure 2.2: Example identity matrix: This is I3.

A2,1x1 + A2,2x2 + · · · + A2,nxn = b2 (2.17)

. . . (2.18)

Am,1x1 + Am,2x2 + · · · + Am,nxn = bm. (2.19)

Matrix-vector product notation provides a more compact representation for
equations of this form.

2.3 Identity and Inverse Matrices

Linear algebra offers a powerful tool called matrix inversion that allows us to
analytically solve Eq. 2.11 for many values of A.

To describe matrix inversion, we first need to define the concept of an identity
matrix. An identity matrix is a matrix that does not change any vector when we
multiply that vector by that matrix. We denote the identity matrix that preserves
n-dimensional vectors as In. Formally, In 2 Rn⇥n, and

8x 2 Rn, Inx = x. (2.20)

The structure of the identity matrix is simple: all of the entries along the main
diagonal are 1, while all of the other entries are zero. See Fig. 2.2 for an example.

The matrix inverse of A is denoted as A
�1, and it is defined as the matrix

such that
A

�1
A = In. (2.21)

We can now solve Eq. 2.11 by the following steps:

Ax = b (2.22)

A
�1

Ax = A
�1

b (2.23)

Inx = A
�1

b (2.24)

36

(Goodfellow 2016)

Invertibility

• Matrix can’t be inverted if…

• More rows than columns

• More columns than rows

• Redundant rows/columns (“linearly dependent”,
“low rank”)

(Goodfellow 2016)

• Lp norm

• Most popular norm: L2 norm, p=2

• L1 norm, p=1:

• Max norm, infinite p:

Norms

CHAPTER 2. LINEAR ALGEBRA

equation. However, we can not use the method of matrix inversion to find the
solution.

So far we have discussed matrix inverses as being multiplied on the left. It is
also possible to define an inverse that is multiplied on the right:

AA
�1 = I. (2.29)

For square matrices, the left inverse and right inverse are equal.

2.5 Norms

Sometimes we need to measure the size of a vector. In machine learning, we usually
measure the size of vectors using a function called a norm. Formally, the Lp norm
is given by

||x||p =

X

i

|xi|
p

! 1
p

(2.30)

for p 2 R, p � 1.

Norms, including the Lp norm, are functions mapping vectors to non-negative
values. On an intuitive level, the norm of a vector x measures the distance from
the origin to the point x. More rigorously, a norm is any function f that satisfies
the following properties:

• f(x) = 0) x = 0

• f(x + y)  f(x) + f(y) (the triangle inequality)

• 8↵ 2 R, f(↵x) = |↵|f(x)

The L2 norm, with p = 2, is known as the Euclidean norm. It is simply the
Euclidean distance from the origin to the point identified by x. The L2 norm is
used so frequently in machine learning that it is often denoted simply as ||x||, with
the subscript 2 omitted. It is also common to measure the size of a vector using
the squared L2 norm, which can be calculated simply as x

>
x.

The squared L2 norm is more convenient to work with mathematically and
computationally than the L2 norm itself. For example, the derivatives of the
squared L2 norm with respect to each element of x each depend only on the
corresponding element of x, while all of the derivatives of the L2 norm depend
on the entire vector. In many contexts, the squared L2 norm may be undesirable

39

CHAPTER 2. LINEAR ALGEBRA

because it increases very slowly near the origin. In several machine learning
applications, it is important to discriminate between elements that are exactly
zero and elements that are small but nonzero. In these cases, we turn to a function
that grows at the same rate in all locations, but retains mathematical simplicity:
the L1 norm. The L1 norm may be simplified to

||x||1 =
X

i

|xi|. (2.31)

The L1 norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of x moves
away from 0 by ✏, the L1 norm increases by ✏.

We sometimes measure the size of the vector by counting its number of nonzero
elements. Some authors refer to this function as the “L0 norm,” but this is incorrect
terminology. The number of non-zero entries in a vector is not a norm, because
scaling the vector by ↵ does not change the number of nonzero entries. The L1

norm is often used as a substitute for the number of nonzero entries.
One other norm that commonly arises in machine learning is the L1 norm,

also known as the max norm. This norm simplifies to the absolute value of the
element with the largest magnitude in the vector,

||x||1 = max
i

|xi|. (2.32)

Sometimes we may also wish to measure the size of a matrix. In the context
of deep learning, the most common way to do this is with the otherwise obscure
Frobenius norm

||A||F =

sX

i,j

A2
i,j

, (2.33)

which is analogous to the L2 norm of a vector.
The dot product of two vectors can be rewritten in terms of norms. Specifically,

x
>
y = ||x||2||y||2 cos ✓ (2.34)

where ✓ is the angle between x and y.

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.

40

CHAPTER 2. LINEAR ALGEBRA

because it increases very slowly near the origin. In several machine learning
applications, it is important to discriminate between elements that are exactly
zero and elements that are small but nonzero. In these cases, we turn to a function
that grows at the same rate in all locations, but retains mathematical simplicity:
the L1 norm. The L1 norm may be simplified to

||x||1 =
X

i

|xi|. (2.31)

The L1 norm is commonly used in machine learning when the difference between
zero and nonzero elements is very important. Every time an element of x moves
away from 0 by ✏, the L1 norm increases by ✏.

We sometimes measure the size of the vector by counting its number of nonzero
elements. Some authors refer to this function as the “L0 norm,” but this is incorrect
terminology. The number of non-zero entries in a vector is not a norm, because
scaling the vector by ↵ does not change the number of nonzero entries. The L1

norm is often used as a substitute for the number of nonzero entries.
One other norm that commonly arises in machine learning is the L1 norm,

also known as the max norm. This norm simplifies to the absolute value of the
element with the largest magnitude in the vector,

||x||1 = max
i

|xi|. (2.32)

Sometimes we may also wish to measure the size of a matrix. In the context
of deep learning, the most common way to do this is with the otherwise obscure
Frobenius norm

||A||F =

sX

i,j

A2
i,j

, (2.33)

which is analogous to the L2 norm of a vector.
The dot product of two vectors can be rewritten in terms of norms. Specifically,

x
>
y = ||x||2||y||2 cos ✓ (2.34)

where ✓ is the angle between x and y.

2.6 Special Kinds of Matrices and Vectors

Some special kinds of matrices and vectors are particularly useful.

40

WiSe 2023/24, Heidelberg University
Kieran Didi

Math Primer 2: Probability
L1, Structural Bioinformatics

Probability Mass Function
Describing discrete event space

Probability Density Function
Describing continuous event space

The Sum Rule of Probability
How to calculate a marginal

Conditional Probability
A slice through the distribution

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P (x, y) are written in a grid with
different values of x in rows and different values of y in columns, it is natural to
sum across a row of the grid, then write P (x) in the margin of the paper just to
the right of the row.

For continuous variables, we need to use integration instead of summation:

p(x) =

Z
p(x, y)dy. (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that y = y given x = x as P (y = y | x = x). This
conditional probability can be computed with the formula

P (y = y | x = x) =
P (y = y, x = x)

P (x = x)
. (3.5)

The conditional probability is only defined when P (x = x) > 0. We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling,
which we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

P (x(1), . . . , x(n)) = P (x(1))⇧n

i=2P (x(i)
| x(1), . . . , x(i�1)). (3.6)

This observation is known as the chain rule or product rule of probability.
It follows immediately from the definition of conditional probability in equation 3.5.

59

The Chain Rule of Probability
How to factor a joint distribution

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

The name “marginal probability” comes from the process of computing marginal
probabilities on paper. When the values of P (x, y) are written in a grid with
different values of x in rows and different values of y in columns, it is natural to
sum across a row of the grid, then write P (x) in the margin of the paper just to
the right of the row.

For continuous variables, we need to use integration instead of summation:

p(x) =

Z
p(x, y)dy. (3.4)

3.5 Conditional Probability

In many cases, we are interested in the probability of some event, given that some
other event has happened. This is called a conditional probability. We denote
the conditional probability that y = y given x = x as P (y = y | x = x). This
conditional probability can be computed with the formula

P (y = y | x = x) =
P (y = y, x = x)

P (x = x)
. (3.5)

The conditional probability is only defined when P (x = x) > 0. We cannot compute
the conditional probability conditioned on an event that never happens.

It is important not to confuse conditional probability with computing what
would happen if some action were undertaken. The conditional probability that
a person is from Germany given that they speak German is quite high, but if
a randomly selected person is taught to speak German, their country of origin
does not change. Computing the consequences of an action is called making an
intervention query. Intervention queries are the domain of causal modeling,
which we do not explore in this book.

3.6 The Chain Rule of Conditional Probabilities

Any joint probability distribution over many random variables may be decomposed
into conditional distributions over only one variable:

P (x(1), . . . , x(n)) = P (x(1))⇧n

i=2P (x(i)
| x(1), . . . , x(i�1)). (3.6)

This observation is known as the chain rule or product rule of probability.
It follows immediately from the definition of conditional probability in equation 3.5.

59

(Conditional) Independence
When can we consider events separately?

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

For example, applying the definition twice, we get

P (a, b, c) = P (a | b, c)P (b, c)
P (b, c) = P (b | c)P (c)

P (a, b, c) = P (a | b, c)P (b | c)P (c).

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution
can be expressed as a product of two factors, one involving only x and one involving
only y:

8x 2 x, y 2 y, p(x = x, y = y) = p(x = x)p(y = y). (3.7)

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

8x 2 x, y 2 y, z 2 z, p(x = x, y = y | z = z) = p(x = x | z = z)p(y = y | z = z).
(3.8)

We can denote independence and conditional independence with compact
notation: x?y means that x and y are independent, while x?y | z means that x
and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The expectation or expected value of some function f(x) with respect to a
probability distribution P (x) is the average or mean value that f takes on when x
is drawn from P . For discrete variables this can be computed with a summation:

Ex⇠P [f(x)] =
X

x

P (x)f(x), (3.9)

while for continuous variables, it is computed with an integral:

Ex⇠p[f(x)] =

Z
p(x)f(x)dx. (3.10)

60

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

For example, applying the definition twice, we get

P (a, b, c) = P (a | b, c)P (b, c)
P (b, c) = P (b | c)P (c)

P (a, b, c) = P (a | b, c)P (b | c)P (c).

3.7 Independence and Conditional Independence

Two random variables x and y are independent if their probability distribution
can be expressed as a product of two factors, one involving only x and one involving
only y:

8x 2 x, y 2 y, p(x = x, y = y) = p(x = x)p(y = y). (3.7)

Two random variables x and y are conditionally independent given a random
variable z if the conditional probability distribution over x and y factorizes in this
way for every value of z:

8x 2 x, y 2 y, z 2 z, p(x = x, y = y | z = z) = p(x = x | z = z)p(y = y | z = z).
(3.8)

We can denote independence and conditional independence with compact
notation: x?y means that x and y are independent, while x?y | z means that x
and y are conditionally independent given z.

3.8 Expectation, Variance and Covariance

The expectation or expected value of some function f(x) with respect to a
probability distribution P (x) is the average or mean value that f takes on when x
is drawn from P . For discrete variables this can be computed with a summation:

Ex⇠P [f(x)] =
X

x

P (x)f(x), (3.9)

while for continuous variables, it is computed with an integral:

Ex⇠p[f(x)] =

Z
p(x)f(x)dx. (3.10)

60

Expectation
A weighted average of all possible outcomes

Gaussian Distribution
The bread-and-butter of MLCHAPTER 3. PROBABILITY AND INFORMATION THEORY

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
p
(x

)

Maximum at x = µ

Inflection points at
x = µ ± �

Figure 3.1: The normal distribution: The normal distribution N (x;µ, �2) exhibits
a classic “bell curve” shape, with the x coordinate of its central peak given by µ, and
the width of its peak controlled by �. In this example, we depict the standard normal
distribution, with µ = 0 and � = 1.

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many indepen-
dent random variables is approximately normally distributed. This means that
in practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one
that inserts the least amount of prior knowledge into a model. Fully developing
and justifying this idea requires more mathematical tools, and is postponed to
section 19.4.2.

The normal distribution generalizes to Rn, in which case it is known as the
multivariate normal distribution. It may be parametrized with a positive
definite symmetric matrix ⌃:

N (x; µ,⌃) =

s
1

(2⇡)ndet(⌃)
exp

✓
�

1

2
(x � µ)>⌃�1(x � µ)

◆
. (3.23)

64

Gaussian Distribution
The bread-and-butter of ML

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

parametrized by a vector p 2 [0, 1]k�1, where pi gives the probability of the i-th
state. The final, k-th state’s probability is given by 1 � 1>

p. Note that we must
constrain 1>

p  1. Multinoulli distributions are often used to refer to distributions
over categories of objects, so we do not usually assume that state 1 has numerical
value 1, etc. For this reason, we do not usually need to compute the expectation
or variance of multinoulli-distributed random variables.

The Bernoulli and multinoulli distributions are sufficient to describe any distri-
bution over their domain. They are able to describe any distribution over their
domain not so much because they are particularly powerful but rather because
their domain is simple; they model discrete variables for which it is feasible to
enumerate all of the states. When dealing with continuous variables, there are
uncountably many states, so any distribution described by a small number of
parameters must impose strict limits on the distribution.

3.9.3 Gaussian Distribution

The most commonly used distribution over real numbers is the normal distribu-
tion, also known as the Gaussian distribution:

N (x; µ, �2) =

r
1

2⇡�2
exp

✓
�

1

2�2
(x � µ)2

◆
. (3.21)

See figure 3.1 for a plot of the density function.
The two parameters µ 2 R and � 2 (0, 1) control the normal distribution.

The parameter µ gives the coordinate of the central peak. This is also the mean of
the distribution: E[x] = µ. The standard deviation of the distribution is given by
�, and the variance by �2.

When we evaluate the PDF, we need to square and invert �. When we need to
frequently evaluate the PDF with different parameter values, a more efficient way
of parametrizing the distribution is to use a parameter � 2 (0, 1) to control the
precision or inverse variance of the distribution:

N (x; µ, ��1) =

r
�

2⇡
exp

✓
�

1

2
�(x � µ)2

◆
. (3.22)

Normal distributions are a sensible choice for many applications. In the absence
of prior knowledge about what form a distribution over the real numbers should
take, the normal distribution is a good default choice for two major reasons.

63

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

Figure 3.1: The normal distribution: The normal distribution N (x;µ, �2) exhibits
a classic “bell curve” shape, with the x coordinate of its central peak given by µ, and
the width of its peak controlled by �. In this example, we depict the standard normal
distribution, with µ = 0 and � = 1.

First, many distributions we wish to model are truly close to being normal
distributions. The central limit theorem shows that the sum of many indepen-
dent random variables is approximately normally distributed. This means that
in practice, many complicated systems can be modeled successfully as normally
distributed noise, even if the system can be decomposed into parts with more
structured behavior.

Second, out of all possible probability distributions with the same variance,
the normal distribution encodes the maximum amount of uncertainty over the
real numbers. We can thus think of the normal distribution as being the one
that inserts the least amount of prior knowledge into a model. Fully developing
and justifying this idea requires more mathematical tools, and is postponed to
section 19.4.2.

The normal distribution generalizes to Rn, in which case it is known as the
multivariate normal distribution. It may be parametrized with a positive
definite symmetric matrix ⌃:

N (x; µ,⌃) =

s
1

(2⇡)ndet(⌃)
exp

✓
�

1

2
(x � µ)>⌃�1(x � µ)

◆
. (3.23)

64

Probability vs Likelihood
Evaluate data vs evaluate model

StatQuest Video
StatExchange Discussion

DataModel

Probability

Likelihood

https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Probability vs Likelihood
Evaluate data vs evaluate model

StatQuest Video

DataModel

Probability

Likelihood

StatExchange Discussion

https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Probability vs Likelihood
Data 𝒙: Crime Locations

StatQuest Video

DataModel

Probability

Likelihood

StatExchange Discussion

https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Probability vs Likelihood
Model Parameter θ: Criminal Location

StatQuest Video

DataModel

Probability

Likelihood

StatExchange Discussion

https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Maximum Likelihood
Modify parameters to make data maximally likely

StatQuest Video

DataModel

Probability

Likelihood

StatExchange Discussion

https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Maximum Likelihood
Modify parameters to make data maximally likely

StatQuest Video

DataModel

Probability

Likelihood

StatExchange Discussion

https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Bayes’ Rule
Incorporating prior knowledge

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

�(x) =
exp(x)

exp(x) + exp(0)
(3.33)

d

dx
�(x) = �(x)(1 � �(x)) (3.34)

1 � �(x) = �(�x) (3.35)

log �(x) = �⇣(�x) (3.36)
d

dx
⇣(x) = �(x) (3.37)

8x 2 (0, 1), ��1(x) = log

✓
x

1 � x

◆
(3.38)

8x > 0, ⇣�1(x) = log (exp(x) � 1) (3.39)

⇣(x) =

Z
x

�1
�(y)dy (3.40)

⇣(x) � ⇣(�x) = x (3.41)

The function ��1(x) is called the logit in statistics, but this term is more rarely
used in machine learning.

Equation 3.41 provides extra justification for the name “softplus.” The softplus
function is intended as a smoothed version of the positive part function, x+ =
max{0, x}. The positive part function is the counterpart of the negative part
function, x� = max{0, �x}. To obtain a smooth function that is analogous to the
negative part, one can use ⇣(�x). Just as x can be recovered from its positive part
and negative part via the identity x+

� x� = x, it is also possible to recover x
using the same relationship between ⇣(x) and ⇣(�x), as shown in equation 3.41.

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P (y | x) and need to know
P (x | y). Fortunately, if we also know P (x), we can compute the desired quantity
using Bayes’ rule:

P (x | y) =
P (x)P (y | x)

P (y)
. (3.42)

Note that while P (y) appears in the formula, it is usually feasible to compute
P (y) =

P
x
P (y | x)P (x), so we do not need to begin with knowledge of P (y).

70

Bayes’ Rule
Incorporating prior knowledge

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

�(x) =
exp(x)

exp(x) + exp(0)
(3.33)

d

dx
�(x) = �(x)(1 � �(x)) (3.34)

1 � �(x) = �(�x) (3.35)

log �(x) = �⇣(�x) (3.36)
d

dx
⇣(x) = �(x) (3.37)

8x 2 (0, 1), ��1(x) = log

✓
x

1 � x

◆
(3.38)

8x > 0, ⇣�1(x) = log (exp(x) � 1) (3.39)

⇣(x) =

Z
x

�1
�(y)dy (3.40)

⇣(x) � ⇣(�x) = x (3.41)

The function ��1(x) is called the logit in statistics, but this term is more rarely
used in machine learning.

Equation 3.41 provides extra justification for the name “softplus.” The softplus
function is intended as a smoothed version of the positive part function, x+ =
max{0, x}. The positive part function is the counterpart of the negative part
function, x� = max{0, �x}. To obtain a smooth function that is analogous to the
negative part, one can use ⇣(�x). Just as x can be recovered from its positive part
and negative part via the identity x+

� x� = x, it is also possible to recover x
using the same relationship between ⇣(x) and ⇣(�x), as shown in equation 3.41.

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P (y | x) and need to know
P (x | y). Fortunately, if we also know P (x), we can compute the desired quantity
using Bayes’ rule:

P (x | y) =
P (x)P (y | x)

P (y)
. (3.42)

Note that while P (y) appears in the formula, it is usually feasible to compute
P (y) =

P
x
P (y | x)P (x), so we do not need to begin with knowledge of P (y).

70

Frequentists versus Bayesians
Data is king vs appreciate prior knowledge and uncertainity

CHAPTER 3. PROBABILITY AND INFORMATION THEORY

�(x) =
exp(x)

exp(x) + exp(0)
(3.33)

d

dx
�(x) = �(x)(1 � �(x)) (3.34)

1 � �(x) = �(�x) (3.35)

log �(x) = �⇣(�x) (3.36)
d

dx
⇣(x) = �(x) (3.37)

8x 2 (0, 1), ��1(x) = log

✓
x

1 � x

◆
(3.38)

8x > 0, ⇣�1(x) = log (exp(x) � 1) (3.39)

⇣(x) =

Z
x

�1
�(y)dy (3.40)

⇣(x) � ⇣(�x) = x (3.41)

The function ��1(x) is called the logit in statistics, but this term is more rarely
used in machine learning.

Equation 3.41 provides extra justification for the name “softplus.” The softplus
function is intended as a smoothed version of the positive part function, x+ =
max{0, x}. The positive part function is the counterpart of the negative part
function, x� = max{0, �x}. To obtain a smooth function that is analogous to the
negative part, one can use ⇣(�x). Just as x can be recovered from its positive part
and negative part via the identity x+

� x� = x, it is also possible to recover x
using the same relationship between ⇣(x) and ⇣(�x), as shown in equation 3.41.

3.11 Bayes’ Rule

We often find ourselves in a situation where we know P (y | x) and need to know
P (x | y). Fortunately, if we also know P (x), we can compute the desired quantity
using Bayes’ rule:

P (x | y) =
P (x)P (y | x)

P (y)
. (3.42)

Note that while P (y) appears in the formula, it is usually feasible to compute
P (y) =

P
x
P (y | x)P (x), so we do not need to begin with knowledge of P (y).

70

