Introduction
 L1, Structural Bioinformatics

WiSe 2023/24, Heidelberg University

Structural Bioinformatics

Structural Bioinformatics

Structural Bioinformatics

Overview

1. A Brief History of the Field
2. Where we are and where we are headed
3. This course
4. To-Dos for you!

Where do we come from?

Bioinformatics did not start structural, and not with DNA

Where do we come from?

Bioinformatics did not start structural, and not with DNA

Where do we come from?

Bioinformatics did not start structural, and not with DNA

Where do we come from?

Bioinformatics did not start structural, and not with DNA

Where do we come from?

Bioinformatics did not start structural, and not with DNA

Where do we come from?

Bioinformatics did not start structural, and not with DNA

Where are we today?

Achievements in Structural Bioinformatics (2014)

STRUCTURAL BIOINFORMATICS and COMPUTATIONAL BIOPHYSICS

ACHIEVEMENTS

CHALLENGES

What are the question we ask?

And how can we answer them?

What are the question we ask?

And how can we answer them?

What are the tools at our disposal?

PreStO

This course

What will we talk about?

This course

Lecture	Biology	Mathematics	CS/Machine Learning	Case Studies
L1: Introduction	Protein structure, history of the field	Intro to linear algebra + probability	Biological file formats + handling	PDB files
L2: ML Basics	-	Optimisation, gradient descent	Neural networks, basic notions	PyTorch
L3: ML Architectures	Computational representation of proteins	Matrix Algebra	CNNs, RNNs, transformers	AlexNet, transformers
L4: Language, Evolution and Bioinformatics	Homology, phylogeny	Distance metrics, clustering	Language models, data leakage	ESM
L5: Geometric Deep Learning	Computational representation of generic molecules	Invariance, equivariance, group theory	Graph Neural Networks (GNNs), geometric graph learning	GCN, GAT, EGNN
L6: Protein Structure Prediction	Structure-Function relationship, coevolution, protein dynamics/ interactions	End-to-end differentiability, quaternions	Inductive biases in model building, self-supervised learning	AlphaFold2, ESMFold
L7: Generative Modelling	-	distribution learning, score functions	Function modelling vs generative modelling, VAEs, diffusion models	Autoregressive VAEs, DDPMs
L8: Protein Design	Sequence-vs structure-based methods, catalysis, functional motifs	SO(3) group equivariance	Equivariant diffusion models	Rosetta, RFDiffusion, ProteinMPNN
L9: Simulations	Protein dynamics, conformational flexibility, structure ensembles	Numerical vs analytical integration, Newton's equations of motion	Performance/accuracy trade-off, coarse-graining, multiprocessing	GROMACS, Allegro
L10: Drug Design	Protein-ligand interactions, virtual screening	-	Rephrasing a problem as a generative one, data-driven vs rule-based methods	AutoDock, DIffDock, DiffSBDD
L11: Further Topics and Conclusion	Summary and Conclusion	Summary and Conclusion	Summary and Conclusion	-

Know your tools

Pymol - Python - Proteins

© PyTorch

To-Dos for you!

1. Enter the Discord server
2. Install Pymol
3. Read the Python Post and do Google Colab Intro
4. Do the first exercises!

Math Primer 1: Linear Algebra

L1, Structural Bioinformatics

WiSe 2023/24, Heidelberg University
Kieran Didi

Overview

1. A Brief History of the Field
2. Where we are and where we are headed
3. This course
4. To-Dos for you!

Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- We denote it with italic font:

$$
a, n, x
$$

Vectors

- A vector is a 1-D array of numbers:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \tag{2.1}\\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- Can be real, binary, integer, etc.
- Example notation for type and size:

$$
\mathbb{R}^{n}
$$

Matrices

- A matrix is a 2-D array of numbers:

$$
\boldsymbol{A} \in \mathbb{R}^{m \times n}
$$

Tensors

- A tensor is an array of numbers, that may have
- zero dimensions, and be a scalar
- one dimension, and be a vector
- two dimensions, and be a matrix
- or more dimensions.

Matrix Transpose

$$
\begin{align*}
& \left(\boldsymbol{A}^{\top}\right)_{i, j}=A_{j, i} . \tag{2.3}\\
& \boldsymbol{A}=\left[\begin{array}{cc}
A_{1, \downarrow} & A_{1,2} \\
A_{2,1} & A_{2, \boldsymbol{2}} \\
A_{3,1} & A_{3,2}
\end{array}\right] \Rightarrow \boldsymbol{A}^{\top}=\left[\begin{array}{lll}
A_{1,1} & A_{2,1} & A_{3,1} \\
A_{1,2} & A_{2,2} & A_{3,2}
\end{array}\right]
\end{align*}
$$

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

$$
\begin{equation*}
(\boldsymbol{A B})^{\top}=\boldsymbol{B}^{\top} \boldsymbol{A}^{\top} . \tag{2.9}
\end{equation*}
$$

Matrix (Dot) Product

$$
\begin{align*}
\boldsymbol{C} & =\boldsymbol{A B} . \tag{2.4}\\
C_{i, j} & =\sum_{k} A_{i, k} B_{k, j} . \tag{2.5}
\end{align*}
$$

Identity Matrix

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Figure 2.2: Example identity matrix: This is \boldsymbol{I}_{3}.
$\forall \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{x}$.

Systems of Equations

$$
\begin{equation*}
A \boldsymbol{x}=\boldsymbol{b} \tag{2.11}
\end{equation*}
$$

expands to

$$
\begin{align*}
& \boldsymbol{A}_{1,:} \boldsymbol{x}=b_{1} \tag{2.12}\\
& \boldsymbol{A}_{2,:} \boldsymbol{x}=b_{2} \tag{2.13}\\
& \quad \ldots \\
& \boldsymbol{A}_{m,:} \boldsymbol{x}=b_{m} \tag{2.15}
\end{align*}
$$

Solving Systems of Equations

- A linear system of equations can have:
- No solution
- Many solutions
- Exactly one solution: this means multiplication by the matrix is an invertible function

Matrix Inversion

- Matrix inyerse:

$$
\begin{equation*}
\boldsymbol{A}^{-1+} \boldsymbol{A}=\boldsymbol{I}_{n} . \tag{2.21}
\end{equation*}
$$

- Solving a system using an inverse:

$$
\begin{gather*}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \tag{2.22}\\
\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} \tag{2.23}\\
\boldsymbol{I}_{n} \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b} \tag{2.24}
\end{gather*}
$$

- Numerically unstable, but useful for abstract analysis

Invertibility

- Matrix can't be inverted if...
- More rows than columns
- More columns than rows
- Redundant rows/columns ("linearly dependent", "low rank")

Norms

- L^{p} norm

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- Most popular norm: L2 norm, $p=2$
- L1 norm, $p=1:\|x\|_{1}=\sum_{i}\left|x_{i}\right|$.
- Max norm, infinite $p:\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$.

Math Primer 2: Probability

L1, Structural Bioinformatics

WiSe 2023/24, Heidelberg University
Kieran Didi

Probability Mass Function
 Describing discrete event space

- The domain of P must be the set of all possible states of x.
- $\forall x \in \mathrm{x}, 0 \leq P(x) \leq 1$. An impossible event has probability 0 and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1 , and no state can have a greater chance of occurring.
- $\sum_{x \in \mathrm{x}} P(x)=1$. We refer to this property as being normalized. Without this property, we could obtain probabilities greater than one by computing the probability of one of many events occurring.

Example: uniform distribution: $\quad P\left(\mathrm{x}=x_{i}\right)=\frac{1}{k}$

Probability Density Function

Describing continuous event space

- The domain of p must be the set of all possible states of x .
- $\forall x \in \mathrm{x}, p(x) \geq 0$. Note that we do not require $p(x) \leq 1$.
- $\int p(x) d x=1$.

Example: uniform distribution: $u(x ; a, b)=\frac{1}{b-a}$.

The Sum Rule of Probability

How to calculate a marginal

$$
\begin{equation*}
\forall x \in \mathrm{x}, P(\mathrm{x}=x)=\sum_{u} P(\mathrm{x}=x, \mathrm{y}=y) . \tag{.3}
\end{equation*}
$$

$$
\begin{equation*}
p(x)=\int p(x, y) d y \tag{3.4}
\end{equation*}
$$

Conditional Probability

A slice through the distribution

$$
P(\mathrm{y}=y \mid \mathrm{x}=x)=\frac{P(\mathrm{y}=y, \mathrm{x}=x)}{P(\mathrm{x}=x)} .
$$

The Chain Rule of Probability

How to factor a joint distribution

$$
\begin{equation*}
P\left(\mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(n)}\right)=P\left(\mathrm{x}^{(1)}\right) \Pi_{i=2}^{n} P\left(\mathrm{x}^{(i)} \mid \mathrm{x}^{(1)}, \ldots, \mathrm{x}^{(i-1)}\right) . \tag{3.6}
\end{equation*}
$$

(Conditional) Independence

When can we consider events separately?

$$
\begin{equation*}
\forall x \in \mathrm{x}, y \in \mathrm{y}, p(\mathrm{x}=x, \mathrm{y}=y)=p(\mathrm{x}=x) p(\mathrm{y}=y) \tag{3.7}
\end{equation*}
$$

$$
\begin{equation*}
\forall x \in \mathrm{x}, y \in \mathrm{y}, z \in \mathrm{z}, p(\mathrm{x}=x, \mathrm{y}=y \mid \mathrm{z}=z)=p(\mathrm{x}=x \mid \mathrm{z}=z) p(\mathrm{y}=y \mid \mathrm{z}=z) . \tag{3.8}
\end{equation*}
$$

Expectation

A weighted average of all possible outcomes

$$
\begin{align*}
& \mathbb{E}_{\mathrm{x} \sim P}[f(x)]=\sum_{x} P(x) f(x) \tag{3.9}\\
& \mathbb{E}_{\mathrm{x} \sim p}[f(x)]=\int p(x) f(x) d x
\end{align*}
$$

linearity of expectations:

$$
\begin{equation*}
\mathbb{E}_{\mathbf{x}}[\alpha f(x)+\beta g(x)]=\alpha \mathbb{E}_{\mathbf{x}}[f(x)]+\beta \mathbb{E}_{\mathbf{x}}[g(x)] \tag{3.11}
\end{equation*}
$$

Gaussian Distribution

The bread-and-butter of ML

Gaussian Distribution

The bread-and-butter of ML

$$
\begin{gather*}
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\sqrt{\frac{1}{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right) . \tag{3.21}\\
\mathcal{N}(\boldsymbol{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sqrt{\frac{1}{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right) . \tag{3.23}
\end{gather*}
$$

Probability vs Likelihood

Evaluate data vs evaluate model

Probability vs Likelihood

Evaluate data vs evaluate model

Probability vs Likelihood

Data x : Crime Locations

Probability vs Likelihood

Model Parameter θ : Criminal Location

Maximum Likelihood

Modify parameters to make data maximally likely

Maximum Likelihood

Modify parameters to make data maximally likely

Bayes' Rule

Incorporating prior knowledge

$$
\begin{equation*}
P(\mathrm{x} \mid \mathrm{y})=\frac{P(\mathrm{x}) P(\mathrm{y} \mid \mathrm{x})}{P(\mathrm{y})} . \tag{3.42}
\end{equation*}
$$

Bayes' Rule

Incorporating prior knowledge

$$
\begin{equation*}
P(\mathrm{x} \mid \mathrm{y})=\frac{P(\mathrm{x}) P(\mathrm{y} \mid \mathrm{x})}{P(\mathrm{y})} . \tag{3.42}
\end{equation*}
$$

Frequentists versus Bayesians

Data is king vs appreciate prior knowledge and uncertainity

$$
\begin{equation*}
P(\mathrm{x} \mid \mathrm{y})=\frac{P(\mathrm{x}) P(\mathrm{y} \mid \mathrm{x})}{P(\mathrm{y})} \tag{3.42}
\end{equation*}
$$

