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Overview

1. A Brief History of the Field
2. Where we are and where we are headed
3. This course

4. To-Dos for you!



Where do we come from?

Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019,

others,
Pages 1981-1996, https://doi.org/10.1093/bib/bby063



https://doi.org/10.1093/bib/bby063
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Where are we today?

Achievements in Structural Bioinformatics (2014)

STRUCTURAL BIOINFORMATICS and COMPUTATIONAL BIOPHYSICS

ACHIEVEMENTS CHALLENGES

Bioinformatics, Volume 31, Issue 1, January 2015, Pages 146-150, https://doi.org/10.1093/biocinformatics/btu769.
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What are the question we ask?

And how can we answer them?
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Protein Structure

Prediction
AlphaFold?2

Sequence Alignments
Structure Alignments
Classification

MD Simulations
Protein Design

Feenstra & Abeln, 2014-2023 Intro Prot Struc Bioinf
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What are the tools at our disposal?
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This course

What will we talk about?

Structural Bioinformatics Course

Concepts Case Studies
How can we describe data/problems? What are implications of these concepts?
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Empowering students and researchers and enabling new research at the
intersection of biology and machine learning
Technical and Research Skills acquired in the course
Which learnings do students take away after the course?
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experiments ideas alternatives approaches results
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Lecture

L1: Introduction

L2: ML Basics

L3: ML Architectures

L4: Language, Evolution and
Bioinformatics

LS: Geometric Deep Learning

L6: Protein Structure Prediction

L7: Generative Modelling

L8: Protein Design

L9: Simulations

L10: Drug Design

L11: Further Topics and Conclusion

This course

Biology

Protein structure, history of the field

Computational representation of
proteins

Homology, phylogeny

Computational representation of
generic molecules

Structure-Function relationship,

coevolution, protein dynamics/
interactions

Sequence- vs structure-based
methods, catalysis, functional motifs

Protein dynamics, conformational
flexibility, structure ensembles

Protein-ligand interactions,
virtual screening

Summary and Conclusion

Mathematics

Intro to linear algebra + probability

Optimisation, gradient descent

Matrix Algebra

Distance metrics, clustering

Invariance, equivariance, group theory

End-to-end differentiability,
quaternions

distribution learning, score functions

S0O(3) group equivariance

Numerical vs analytical integration,
Newton's equations of motion

Summary and Conclusion

CS/Machine Learning

Biological file formats + handling

Neural networks, basic notions

CNNSs, RNNs, transformers

Language models, data leakage

Graph Neural Networks (GNNs),
geometric graph learning

Inductive biases in model building,
self-supervised learning

Function modelling vs generative
modelling, VAEs, diffusion models

Equivariant diffusion models

Performance/accuracy trade-off,
coarse-graining, multiprocessing

Rephrasing a problem as a generative
one, data-driven vs rule-based methods

Summary and Conclusion

Case Studies

PDB files

PyTorch

AlexNet, transformers

ESM

GCN, GAT, EGNN

AlphaFold2, ESMFold

Autoregressive VAEs,
DDPMs

Rosetta, RFDiffusion,
ProteinMPNN

GROMACS, Allegro

AutoDock, DIffDock,
DiffSBDD



Know your tools

Pymol - Python - Proteins

A

O PyTorch

(Y




To-Dos for you!

1. Enter the Discord server
2. Install Pymol

3. Read the Python Post and do Google Colab Intro

4. Do the first exercises!


https://kdidi.netlify.app/blog/programming/2022-11-03-python-dsintro/
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Scalars

A scalar Is a single number
Integers, real numbers, rational numbers, etc.

We denote it with italic font:

a,n,x

(Goodfellow 2016)



Vectors

- Avector is a 1-D array of numbers:

_ajl_
L2

Ln

-+ Can be real, binary, integer, etc.

- Example notation for type and size:

Rn

(Goodfellow 2016)



Matrices

- A matrix is a 2-D array of numbers:

- A1q Ao
Ao Aoo |

Column

-+ Example notation for type and shape:

A c R™*"

(2.2)

oodfellow 2016



Tensors

A tensor is an array of numbers, that may have
zero dimensions, and be a scalar
one dimension, and be a vector
two dimensions, and be a matrix

or more dimensions.

(Goodfellow 2016)



Matrix Transpose

(A"); = A, (2.3)

Y

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the
main diagonal.

(AB)' =B'A". (2.9)

(Goodfellow 2016)



Matrix (Dot) Product

C = AB. (2.4)

C;i = Z A; 1B ;. (2.5)
k

o,

Must
match



Vo &

ldentity Matrix

Figure 2.2: Example identity matrix: This is I3.

R" I, x = .

|
o O =

S = O

;-
0
1_

(2.20)



Systems of Equations

Ax = b (2.11)
expands to
Al .x = b (2.12)
Ay .x = by (2.13)
. (2.14)
A,.x = by, (2.15)



Solving Systems of
Equations

- Alinear system of equations can have:
» No solution
+ Many solutions

- Exactly one solution: this means multiplication by
the matrix is an invertible function

(Goodfellow 2016)



Matrix Inversion

- Matrix inYerse:
A "TA=1,. (2.21)

+ Solving a system using an inverse:

Ax =b (2.22)
A 'Az=A""b (2.23)
I,x = A 'b (2.24)

- Numerically unstable, but useful for abstract
analysis

(Goodfellow 2016)



Invertibility

- Matrix can’t be inverted if...

- More rows than columns
- More columns than rows

- Redundant rows/columns (“linearly dependent?,
“low rank”)

(Goodfellow 2016)



- [P norm

S =

2]l = (Z rmp)

- Most popular norm: L2 norm, p=2

- L1 norm, p=1: ||| = Z|$z|

- Max norm, infinite p. ||z||o = max |z;]|.

(2.31)

(2.32)

oodfellow 2016
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Probability Mass Function

Describing discrete event space

e The domain of P must be the set of all possible states of x.

o Vz € x,0 < P(x) < 1. An impossible event has probability 0 and no state can
be less probable than that. Likewise, an event that is guaranteed to happen
has probability 1, and no state can have a greater chance of occurring.

® > .. P(x) =1. We refer to this property as being normalized. Without
this property, we could obtain probabilities greater than one by computing
the probability of one of many events occurring.

Example: uniform distribution: P (X — 337,) —

1
k



Probability Density Function

Describing continuous event space

e The domain of p must be the set of all possible states of x.

o Vx € x,p(x) > 0. Note that we do not require p(x) < 1.
e [p(x)dr=1.

1
_a°

Example: uniform distribution: u(z;a,b) = ;



The Sum Rule of Probability

How to calculate a marginal




Conditional Probability

A slice through the distribution




The Chain Rule of Probability

How to factor a joint distribution

P(xW, ... x") = px, (x| x| xED),

()



(Conditional) Independence

When can we consider events separately?



Expectation

A weighted average of all possible outcomes

Lplf(@)] = 3 P@)f(a),

t e[ (@)] = / p(z) f (2)dz.

linearity of expectations:

ilaf(z) + Bg(x)] = o

Ul f ()] + BE




Gaussian Distribution
The bread-and-butter of ML

Maximum at * = u

Inflection points at

T=U=TO

-20 —-15 —-1.0 —-0.9 0.0 0.9 1.0 1.5 2.0



Gaussian Distribution
The bread-and-butter of ML

N (z;p,0%) = \/ : exp ( 212(:1; - M)Q) . (3.21)

Qo2 o

N(x; p, 3) = \/(ZW)”;et(E) exp (—%(iv —p) T (x - u)> . (3.23)



Probability vs Likelihood

Evaluate data vs evaluate model

Probability

Modael Data

o

Likelihood

StatExchange Discussion
StatQuest Video



https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Probability vs Likelihood
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Probability vs Likelihood

Data x: Crime Locations

Probability

Modael Data
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Likelihood
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Probability vs Likelihood

Model Parameter 9: Criminal Location
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Maximum Likelihood

Modify parameters to make data maximally likely
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Maximum Likelihood

Modify parameters to make data maximally likely
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https://www.youtube.com/watch?v=pYxNSUDSFH4
https://stats.stackexchange.com/questions/2641/what-is-the-difference-between-likelihood-and-probability

Bayes’ Rule

Incorporating prior knowledge

P(x|y) = . (3.42)



Bayes’ Rule

Incorporating prior knowledge

P(x|y) = . (3.42)



Frequentists versus Bayesians

Data is king vs appreciate prior knowledge and uncertainity

P(x|y) = . (3.42)



