UNIVERSITÄT Heidelberg

Introduction L1, Structural Bioinformatics

WiSe 2023/24, Heidelberg University

Structural Bioinformatics

Structural Bioinformatics

Structural Bioinformatics

Source: Wikipedia.org

1. A Brief History of the Field

2. Where we are and where we are headed

3. This course

4. To-Dos for you!

Bioinformatics did not start structural, and not with DNA

Jeff Gauthier and others, A brief history of bioinformatics, *Briefings in Bioinformatics*, Volume 20, Issue 6, November 2019, Pages 1981–1996, <u>https://doi.org/10.1093/bib/bby063</u>

Bioinformatics did not start structural, and not with DNA

S

Thr-His-Glu-Cys	[Peptide]
Glu-Cys-Ala-Thr	[Peptide]
Lys-Thr-His	[Peptide]
Met-Ile-Lys	[Peptide]
Met-Ile-Lys-Thr-His-Glu-Cys-Ala-Thr	[Protein]

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019, Pages 1981–1996, https://doi.org/10.1093/bib/bby063

Bioinformatics did not start structural, and not with DNA

ASSEMBLY+ALIGNMENT

Edman Sequencing, Dayhoff,

Needleman-Wunsch (1970)

Thr-His-Glu-Cys	[Peptide]
Glu-Cys-Ala-Thr	[Peptide]
Lys-Thr-His	[Peptide]
Met-Ile-Lys	[Peptide]
Met-Ile-Lys-Thr-His-Glu-Cys-Ala-Thr	[Protein]

S

C

S THE SHIFT TO DNA Sanger Sequencing, Phylogenetics

5

S

Jeff Gauthier and others, A brief history of bioinformatics, Briefings in Bioinformatics, Volume 20, Issue 6, November 2019, Pages 1981–1996, https://doi.org/10.1093/bib/bby063

Bioinformatics did not start structural, and not with DNA

ASSEMBLY+ALIGNMENT

Edman Sequencing, Dayhoff,

Needleman-Wunsch (1970)

Thr-His-Glu-Cys	[Peptide]
Glu-Cys-Ala-Thr	[Peptide]
Lys-Thr-His	[Peptide]
Met-Ile-Lys	[Peptide]
Met-Ile-Lys-Thr-His-Glu-Cys-Ala-Thr	[Protein]

S

C

S THE SHIFT TO DNA Sanger Sequencing, Phylogenetics

THE PC MOVEMENT

Open-source, Journals, Perl&Python

Bioinformatics did not start structural, and not with DNA

ASSEMBLY+ALIGNMENT

Edman Sequencing, Dayhoff,

Needleman-Wunsch (1970)

Thr-His-Glu-Cys	[Peptide]
Glu-Cys-Ala-Thr	[Peptide]
Lys-Thr-His	[Peptide]
Met-Ile-Lys	[Peptide]
Met-Ile-Lys-Thr-His-Glu-Cys-Ala-Thr	[Protein]

S

C

S THE SHIFT TO DNA Sanger Sequencing, Phylogenetics

THE PC MOVEMENT

Open-source, Journals, Perl&Python

S WWW, GENOMES & STRUCTURES Human Genome, Swiss-Prot, NCBI, Webtools

Bioinformatics did not start structural, and not with DNA

ASSEMBLY+ALIGNMENT

Edman Sequencing, Dayhoff,

Needleman-Wunsch (1970)

Thr-His-Glu-Cys	[Peptide]
Glu-Cys-Ala-Thr	[Peptide]
Lys-Thr-His	[Peptide]
Met-Ile-Lys	[Peptide]
Met-Ile-Lys-Thr-His-Glu-Cys-Ala-Thr	[Protein]

S

S THE SHIFT TO DNA Sanger Sequencing, Phylogenetics

THE PC MOVEMENT

Open-source, Journals, Perl&Python

HIGH THROUGHPUT

NGS, Compute Clusters, PDB 3000 -> 8000 entries

S WWW, GENOMES & STRUCTURES Human Genome, Swiss-Prot, NCBI, Webtools

Where are we today? **Achievements in Structural Bioinformatics (2014)**

STRUCTURAL BIOINFORMATICS and COMPUTATIONAL BIOPHYSICS CHALLENGES Accessibility and integration Protein engineering and synthetic biology of data and methods OPEN CCESS Modeling 3D NA structures Small Modeling differences multi-domain may have proteins drastic and large effects assemblies Protein folding liomolecules as dynamic objects Origins and evolution Integration with of protein structure systems biology

What are the question we ask? And how can we answer them?

And how can we answer them?

What are the tools at our disposal?

PreStO

This course

What will we talk about?

Structural Bioinformatics Course

This course

Lecture	Biology	Mathematics	CS/Machine Learning	Case Studies
L1: Introduction	Protein structure, history of the field	Intro to linear algebra + probability	Biological file formats + handling	PDB files
L2: ML Basics	-	Optimisation, gradient descent	Neural networks, basic notions	PyTorch
L3: ML Architectures	Computational representation of proteins	Matrix Algebra	CNNs, RNNs, transformers	AlexNet, transformers
L4: Language, Evolution and Bioinformatics	Homology, phylogeny	Distance metrics, clustering	Language models, data leakage	ESM
L5: Geometric Deep Learning	Computational representation of generic molecules	Invariance, equivariance, group theory	Graph Neural Networks (GNNs), geometric graph learning	GCN, GAT, EGNN
L6: Protein Structure Prediction	Structure-Function relationship, coevolution, protein dynamics/ interactions	End-to-end differentiability, quaternions	Inductive biases in model building, self-supervised learning	AlphaFold2, ESMFold
L7: Generative Modelling		distribution learning, score functions	Function modelling vs generative modelling, VAEs, diffusion models	Autoregressive VAEs, DDPMs
L8: Protein Design	Sequence- vs structure-based methods, catalysis, functional motifs	SO(3) group equivariance	Equivariant diffusion models	Rosetta, RFDiffusion, ProteinMPNN
L9: Simulations	Protein dynamics, conformational flexibility, structure ensembles	Numerical vs analytical integration, Newton's equations of motion	Performance/accuracy trade-off, coarse-graining, multiprocessing	GROMACS, Allegro
L10: Drug Design	Protein-ligand interactions, virtual screening	-	Rephrasing a problem as a generative one, data-driven vs rule-based methods	AutoDock, DIffDock, DiffSBDD
L11: Further Topics and Conclusion	Summary and Conclusion	Summary and Conclusion	Summary and Conclusion	-

Know your tools Pymol – Python - Proteins

To-Dos for you!

1. Enter the Discord server

2. Install Pymol

3. Read the Python Post and do Google Colab Intro

4. Do the first exercises!

UNIVERSITÄT HEIDELBERG

Math Primer 1: Linear Algebra L1, Structural Bioinformatics

WiSe 2023/24, Heidelberg University Kieran Didi

1. A Brief History of the Field

2. Where we are and where we are headed

3. This course

4. To-Dos for you!

Scalars

- A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- We denote it with italic font:
 - a, n, x

• A vector is a 1-D array of numbers:

- Can be real, binary, integer, etc.
- Example notation for type and size:

Vectors

(2.1)

Matrices

• A matrix is a 2-D array of numbers:

$A_{1,1}$ $A_{1,2}$ (2.2) $A_{2,1}$ $A_{2,2}$ Column • Example notation for type and shape:

 $A \in \mathbb{R}^{m imes n}$

Row

Tensors

- A tensor is an array of numbers, that may have
 - zero dimensions, and be a scalar
 - one dimension, and be a vector
 - two dimensions, and be a matrix
 - or more dimensions.

Matrix Transpose

•

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

$$(\boldsymbol{A}\boldsymbol{B})^{ op}=\boldsymbol{B}^{ op}\boldsymbol{A}^{ op}$$

(2.3)

$$\boldsymbol{A}^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

C = AB.

 $C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Figure 2.2: Example identity matrix: This is I_3 .

$\forall \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{I}_n \boldsymbol{x} = \boldsymbol{x}.$

Systems of Equations (2.11)

Ax = b

expands to

 $\boldsymbol{A}_{1,:}\boldsymbol{x}=b_1$ $A_{2,:}x = b_2$ • • •

 $A_{m,:}x = b_m$

(2.12)(2.13)(2.14)(2.15)

Solving Systems of Equations

- A linear system of equations can have:
 - No solution •
 - Many solutions
 - Exactly one solution: this means multiplication by the matrix is an invertible function

Matrix Inversion

- Matrix inverse: $A^{-1}A = I_n$.
- Solving a system using an inverse:

$$Ax = b$$

- (2.22) $A^{-1}Ax = A^{-1}b$ (2.23) $\boldsymbol{I}_n \boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b}$ (2.24)
- Numerically unstable, but useful for abstract analysis

(2.21)

Invertibility

- Matrix can't be inverted if...
 - More rows than columns
 - More columns than rows
 - Redundant rows/columns ("linearly dependent", "low rank")

L^p norm •

$$||\boldsymbol{x}||_p = \left(\sum_{i} |\boldsymbol{x}|_i\right)$$

Most popular norm: L2 norm, *p*=2 •

• L1 norm,
$$p=1: ||x||_1 = \sum_i |x|_i$$

• Max norm, infinite *p*: $||\mathbf{x}||_{\infty} = \max_{i} |x_i|$.

Norms $\left|x_{i}\right|^{p}$

 $x_i|.$

(2.31)

(2.32)

UNIVERSITÄT HEIDELBERG

Math Primer 2: Probability L1, Structural Bioinformatics

WiSe 2023/24, Heidelberg University Kieran Didi

Probability Mass Function Describing discrete event space

- The domain of P must be the set of all possible states of x.
- the probability of one of many events occurring.

Example: uniform dist

• $\forall x \in x, 0 \leq P(x) \leq 1$. An impossible event has probability 0 and no state can be less probable than that. Likewise, an event that is guaranteed to happen has probability 1, and no state can have a greater chance of occurring.

• $\sum_{x \in \mathbf{x}} P(x) = 1$. We refer to this property as being **normalized**. Without this property, we could obtain probabilities greater than one by computing

ribution:
$$P(\mathbf{x} = x_i) = \frac{1}{k}$$

Probability Density Function Describing continuous event space

- $\int p(x)dx = 1.$

Example: uniform distribution: $u(x; a, b) = \frac{1}{b-a}$.

• The domain of p must be the set of all possible states of x. • $\forall x \in x, p(x) \ge 0$. Note that we do not require $p(x) \le 1$.

The Sum Rule of Probability How to calculate a marginal

$$\forall x \in \mathbf{x}, P(\mathbf{x} = x) = \sum_{y} P(\mathbf{x} = x, \mathbf{y} = y).$$

$$p(x) = \int p(x, y) dy.$$

(3.4)

Conditional Probability

A slice through the distribution

The Chain Rule of Probability How to factor a joint distribution

 $P(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}) = P(\mathbf{x}^{(1)}) \prod_{i=2}^{n} P(\mathbf{x}^{(i)} \mid \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(i-1)}).$

(Conditional) Independence When can we consider events separately?

$\forall x \in \mathbf{x}, y \in \mathbf{y}, \ p(\mathbf{x} = x, \mathbf{y})$

 $\forall x \in \mathbf{x}, y \in \mathbf{y}, z \in \mathbf{z}, \ p(\mathbf{x} = x, \mathbf{y} = y \mid \mathbf{z})$

$$y = y) = p(x = x)p(y = y).$$
 (3.7)

$$(z = z) = p(x = x | z = z)p(y = y | z = z).$$

(3.8)

Expectation

A weighted average of all possible outcomes

$$\mathbb{E}_{\mathbf{x}\sim P}[f(x)] = \sum_{x} P(x)f(x),$$
$$\mathbb{E}_{\mathbf{x}\sim p}[f(x)] = \int p(x)f(x)dx.$$

linearity of expectations:

 $\mathbb{E}_{\mathbf{x}}[\alpha f(x) + \beta g(x)] = \alpha \mathbb{E}_{\mathbf{x}}[f(x)] + \beta \mathbb{E}_{\mathbf{x}}[g(x)],$

(3.9)

(3.10)

(3.11)

Gaussian Distribution The bread-and-butter of ML

Gaussian Distribution The bread-and-butter of ML

$$\mathcal{N}(x;\mu,\sigma^2) = \sqrt{\frac{1}{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right). \tag{3.21}$$

$$\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sqrt{\frac{1}{(2\pi)^n \det(\boldsymbol{\Sigma})}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right). \quad (3.23)$$

Probability vs Likelihood

Evaluate data vs evaluate model

Probability vs Likelihood

Evaluate data vs evaluate model

Probability vs Likelihood Data *x***: Crime Locations**

Probability vs Likelihood Model Parameter θ: Criminal Location

Maximum Likelihood Modify parameters to make data maximally likely

Maximum Likelihood Modify parameters to make data maximally likely

Bayes' Rule

Incorporating prior knowledge

$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}.$

(3.42)

Bayes' Rule

Incorporating prior knowledge

$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}.$

(3.42)

Frequentists versus Bayesians Data is king vs appreciate prior knowledge and uncertainity

$P(\mathbf{x} \mid \mathbf{y}) = \frac{P(\mathbf{x})P(\mathbf{y} \mid \mathbf{x})}{P(\mathbf{y})}.$

