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1 Types of Machine Learning
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Al Is more than just Deep Learning

Cellular Automata,
Complexity, etc.

exxactcorp.com



2 Linear Models



What is a linear model?

Adjust your free parameter based on some loss

Linear regression example
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What is a linear model?

Adjust your free parameter based on some loss

; Linear regression example - Optimization of w
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MSE (Mean-squared error): L[f] := Y-y (f(z:8) — y(z))?



What is a train versus a test dataset?

Evaluate how well your model generalises

Training data/validation/test

Train model Evaluate model
on Training Set on Validation Set

Tweak model according
to results on (Validation Set)

_______________ l

Pick model that does J Confirm results

best on (Validation Set| on| Test Set




Why limit yourself to linear models?

Varying the degree of basis function results In different fits

Undertitting Appropriate capacity Overfitting




Always look at your test set!

Machine learning models like to overfit your data
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The Bias-Variance Trade-Off

Underfitting zone Overfitting zone
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3 Gradient Descent




How do we optimize our model?

; Linear regression example - Optimization of w
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How do we optimize our model?

Follow the gradient

2.0

1.5 Global minimum at x = 0.
Since f’'(x) = 0, gradient
descent halts here.
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For x < 0, we have f'(x) <A For x > 0, we have f’(x) > [0,
so we can decrease f b so we can decrease f by
—0.5 moving rightward. moving leftward.
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How can | imagine that?

Think about a ball rolling down the loss landscape

Descent

Animations: Nick Gale
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Gradient Descent in formulas

Going in the opposite direction

J(6)
0=0—n-VJ(6).

" (local) minimum

>

0" 6

https://www.ruder.io/optimizing-gradient-descent/



Going down the gradient

Local Minima can become a problem
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Going down the gradient

Local Minima can become a problem

Descent 1.0y

V| Z

Animations: Nick Gale



Learning Rate

The first hyperparameter you should check if trouble arises

L

lterations=1

V¥ Learning rate: 0.15
-~ Learning rate: 0.01
~E3—- Learning rate: 0.001

Animations: Nick Gale



Vanilla Gradient Descent is slow

Speed it up by only looking at one data point at a time

Vanilla GD 0=0—mn-VyJ(0).

l

Stochastic GD 0 =60—n-VeJ(6; 2\ y(i)).

Animations: Nick Gale



How can | imagine that?

Planned and cautious versus spontaneous and chaotic

Batch Gradient Descent Stochastic Gradient Descent

e
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Mini-batch GD: The best of both worlds

Only look at a subset of your data for each update step

Stochastic GD =0—nVeJ(6;z';y),

l

Mini-batch GD 0=0—n- VQJ(G; a:(i‘H"); y(i:i—l—n))

https://www.ruder.io/optimizing-gradient-descent/



Mini-batch GD: The best of both worlds

Only look at a subset of your data for each update step

Batch Gradient Descent Mini-Batch Gradient Descent

Stochastic Gradient Descent

=

analyticsvidhya.com



Which GD to choose?

In practice, mini-batch is often a good choice

Update Memory Online

Method Accuracy Speed  Usage Learning
Bat(.:h Good Slow H|gh No
gradient descent

Stoc-hastlc Good (yvnth High s Vo
gradient descent  annealing)

Mini-batch

. Good Medium  Medium Yes
gradient descent

https://www.ruder.io/optimizing-gradient-descent/



Real-life optimisation is hard

We do not expect to find the global minimum in most cases

This local minimum
performs nearly as well as
the global one,

so 1t is an acceptable
halting point.

Ideally, we would like

to arrive at the global
minimum, but this
might not be possible.

This local minimum performs
poorly and should be avoided.




We usually don’t even reach a local minimum
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Curse of Dimensionality

The higher-dimensional the data, the more we need of it




Momentum Optimisers

Have a memory of the past to overcome dire times
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Momentum Optimisers

Have a memory of the past to overcome dire times

Vanilla GD 0=0—mn-VyJ(0).

l

Vi = YUp_1 T 77V9J(9)
0 =60 — V¢

Momentum GD

https://www.ruder.io/optimizing-gradient-descent/



Momentum

Speeding things up when the gradient becomes shallow

lterations=1

—£— Vanilla GD
YV Momentum GD

Animations: Nick Gale



A Zoo of Momentum Methods...

ADAM is the standard default choice

Method

Update equation

SGD

Momentum
NAG

Adagrad

Adadelta
RMSprop

Adam
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https://www.ruder.io/optimizing-gradient-descent/



A Zoo of Momentum Methods...
ADAM is the standard default choice

lterations=1
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Animations: Nick Gale



Back to learning rate: Is there an optimum?

Curvature helps out

Negative curvature No curvature Positive curvature
& & &
= = =



Newton’s method: Using curvature

The Hessian tells you your optimal step size

f@ —eg) ~ f(z'V) —eg' g+ €°g" Hg. (4.9)

Big eigenvalues slow you
down if you align with their
eigenvectors



Hessian

Each step Is better, but evaluating each one Is very expensive

lterations=1

—£— Vanilla GD
V' Hessian GD

Animations: Nick Gale



4 Deep Learning



Deep Learning as LEGO for adults

How to build your best model

DeepMind, 2022



Deep Learning as LEGO for adults

How to build your best model
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How to adjust Node
this input, if my
output needs to >

change?

-

What to output?

DeepMind, 2022



Artificial Neurons

Not biologically plausible, but still very useful

o |

Dendrite “Dendrite”

O\ “Axon”
o

DeepMind, 2022



The Perceptron (Rosenblatt, 1958)

Not biologically plausible, but still very useful

£(x) = 1 if w-x+0b>0,
0 otherwise e

DeepMind, 2022



The Perceptron (Rosenblatt, 1958)

Not biologically plausible, but still very useful

£(x) = 1 f w-x+b>0,
0 otherwise e




The perceptron can solve AND and OR

Linear problems can be solved

epoch 1 error 0.000 epoch 1 error 1.000
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Perceptron on linearly separable data

Linear problems can be solved

epoch 1 error 5.500

x[2]

1.0
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X[1]



The perceptron cannot solve XOR
Minsky & Papert, 1969: Dawn of the first Al winter

epoch 1 error 1.500
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The secret sauce (1/2): Multilayer Perceptrons

Backpropagation allowed the use of deeper networks
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The secret sauce (1/2): Multilayer Perceptrons

Backpropagation allowed the use of deeper networks

a Average over all training examples
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How do we tune hidden neurons

Backpropagation allowed the use of deeper networks

How to adjust
this input, if my
output needs to
change?

What to output?

DeepMind, 2022



The secret sauce (1/2): Multilayer Perceptrons

Backpropagation allowed the use of deeper networks

Cost—>»Co(...) = (a(L) — y)?

L) — (L) g(L=1) 4 p(L)

Desired
output

T

Y

a(L) — o(z5)

YouTube, 3B1B



The secret sauce (2/2): Activation functions

Non-linearities allow us to solve non-linear problems

100 -75 -50 -25 00 25 50 75 100
X

Activation functions are often called non-linearities. One of the most commonly used activation functions.

Activation functions are applied point-wise. Made math analysis of networks much simpler.

DeepMind, 2022



Solve XOR with just 2 hidden neurons

- Hidden layers bend and deform input space
- Last linear model does linear classification
- Non-linear transformations are key for deep learning!

- Our network became a feature extractor!



What is deep lerning doing?

Transforming data non-linearly into a better representation

Yoshua Bengio. On the Number of Linear Regions of
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What is deep lerning doing?

Transforming data non-linearly into a better representation

RelLU RelLU RelLU

4
QXA X567 N (/]
R~ XX >
B WA K7 XA ) P
RRXN LUK X 3 d

D A Y
K KW
TREIRR

» 7 (‘: 4
?l?"‘(‘)“‘i\\‘l
7O
;II’A A‘\\:
%

N

/




Let’s try 1t ourselves

See the power of hidden layers

http://playground.tensorflow.org/



Feature/Representation engineering is hard

The Deep Learning way: Let the network figure it out for you




Deep Learning performs feature extraction

The deeper the network, the more complex the patterns can be

Unstructured data Structured data

“Manual”
feature extraction

Sepal length | Sepal width | Petal length I Petal width
FFFFFFF 51 3.5 1.4 0.3
FFFFFFF 49 3.0 1.4 0.2
ﬁ FFFFFF
Conventional
machine

learning




The demons in the pandemonium

Selfridge, 1959: Pattern recognition triggers downstream cognition

266 7. Pattern recognition and attention
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The demons In the pandemonium

Trunk versus head

9266 7. Pattern recognition and attention
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Deep Lerning as feature extractors

Trunk versus head

private
heads

common
trunk

standardized standardized standardized
compound compound compound
descriptors descriptors descriptors

Pejo, Balazs, et al. "Collaborative Drug Discovery: Inference-level Data Protection
Perspective." arXiv preprint arXiv:2205.06506 (2022).



Deep Lerning as feature extractors

Trunk versus head

(A) Label /%
Raw data Discriminative features ,/‘\‘

Layer2 TSS Intron Exon

Feature
@ extraction 5 A
Layer 1 | (e | [ Thrsdl..
\/
wﬂb@)f. Raw data .WM" )'-n |

Adapted under CC BY 3.0 license from: Kalinin, Alexandr A., et al. "Deep learning in pharmacogenomics:
from gene regulation to patient stratification." Pharmacogenomics 19.7 (2018): 629-650.



Regularisation: How do we avoid overfitting?

Machine learning models like to overfit your data

— - 'lraining error

Underfitting zone| Overfitting zone : :
— (eneralization error

Error

0 Optimal Capacity

Capacity



Explicit Regularisation

-> Add reg. term to loss function:

- Zuw’:’(.’) H“'Hl
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Regularisation: How do we avoid overfitting?

Machine learning models like to overfit your data

Implicit Regularisation

-> Various hacks to improve optimisation

- data augmentation
- dropout

- early stopping

- label smoothing

- Batch/Layer Normalisation



¥ Takeaway @

Neural networks perform implicit feature
extraction and are optimized via gradient
descent.



Outlook for Part Il

1. Images: Convolutional Neural Networks
2. Sequences: RNNs + Transformers

3. Current developments



