UNIVERSITÄT HEIDELBERG

L2, Structural Bioinformatics

WiSe 2023/24, Heidelberg University

Machine Learning for Biochemistry

1. Types of Machine Learning

- 2. Linear Models
- **3. Gradient Descent**
- 4. Deep Learning
- 5. Outlook for what's to come

Book Recommendations The Classics

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Deringer

The Little Book of Deep Learning

François Fleuret

Book Recommendations Background and more introductory books

MATHEMATICS FOR MACHINE LEARNING

Andrew W. Trask

DEEP LEARNING with **Python**

SECOND EDITION

François Chollet

1 Types of Machine Learning

Machine Learning

Statistical Learning

exxactcorp.com

2 Linear Models

What is a linear model? Adjust your free parameter based on some loss

What is a linear model? Adjust your free parameter based on some loss

What is a linear model? Adjust your free parameter based on some loss

MSE (Mean-squared error): L[f] := $\sum_{x \in X} (f(x;\theta) - y(x))^2$

What is a train versus a test dataset?

Evaluate how well your model generalises

Training data/validation/test

Why limit yourself to linear models? Varying the degree of basis function results in different fits

 x_0

Always look at your test set! Machine learning models like to overfit your data

Capacity

The Bias-Variance Trade-Off

B

3 Gradient Descent

How do we optimize our model?

How do we optimize our model? Follow the gradient

 ${\mathcal X}$

How can I imagine that? Think about a ball rolling down the loss landscape

Descent

Animations: Nick Gale

How can I imagine that? Think about a ball rolling down the loss landscape

Descent

Animations: Nick Gale

Gradient Descent in formulas Going in the opposite direction

$heta= heta-\eta\cdot abla_ heta J(heta).$

https://www.ruder.io/optimizing-gradient-descent/

Going down the gradient Local Minima can become a problem

Descent

Animations: Nick Gale

Going down the gradient Local Minima can become a problem

Descent

Animations: Nick Gale

Learning Rate

The first hyperparameter you should check if trouble arises Iterations=1

Vanilla Gradient Descent is slow Speed it up by only looking at one data point at a time

Animations: Nick Gale

How can I imagine that?

Batch Gradient Descent

Planned and cautious versus spontaneous and chaotic

analyticsvidhya.com

Mini-batch GD: The best of both worlds Only look at a subset of your data for each update step

Mini-batch GD

 $heta = heta - \eta \cdot
abla_ heta J(heta; x^{(i:i+n)}; y^{(i:i+n)})$

https://www.ruder.io/optimizing-gradient-descent/

Mini-batch GD: The best of both worlds Only look at a subset of your data for each update step

Batch Gradient Descent

Stochastic Gradient Descent

Mini-Batch Gradient Descent

analyticsvidhya.com

Which GD to choose?

In practice, mini-batch is often a good choice

Update Speed	Memory Usage	Online Learning	
Slow	High	No	
High	Low	Yes	
Medium	Medium	Yes	

Real-life optimisation is hard We do not expect to find the global minimum in most cases

We usually don't even reach a local minimum

Curse of Dimensionality

The higher-dimensional the data, the more we need of it

Figure 5.9

Momentum Optimisers Have a memory of the past to overcome dire times

Momentum Optimisers Have a memory of the past to overcome dire times

Momentum Optimisers Have a memory of the past to overcome dire times

https://www.ruder.io/optimizing-gradient-descent/

Momentum

Speeding things up when the gradient becomes shallow

Iterations=1

Animations: Nick Gale

A Zoo of Momentum Methods...

ADAM is the standard default choice

Method	Update eq
SGD	$g_t = \nabla_{\theta_t} J$ $\Delta \theta_t = -\eta$ $\theta_t = \theta_t + J$
Momentum NAG Adagrad	$\Delta \theta_t = -\gamma$ $\Delta \theta_t = -\gamma$ $\Delta \theta_t = -\gamma$
Adadelta	$\Delta \theta_t = -\frac{\dot{F}}{2}$
RMSprop	$\Delta \theta_t =$
Adam	$\Delta \theta_t = -\frac{1}{2}$

uation (θ_t) • gt $\Delta \theta_t$ $v_{t-1} - \eta g_t$ $\frac{\gamma v_{t-1} - \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})}{\frac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t} \frac{\varphi g_t}{\sqrt{G_t + \epsilon}} \frac{\log g_t}{RMS[\Delta \theta]_{t-1}} g_t}{RMS[g]_t}$ $/E[g^2]_t + \epsilon$ $\frac{1}{\sqrt{\hat{\mathsf{v}}_t}+\epsilon}\hat{m}_t$

A Zoo of Momentum Methods...

ADAM is the standard default choice

Iterations=1

Animations: Nick Gale

Back to learning rate: Is there an optimum? Curvature helps out

Newton's method: Using curvature The Hessian tells you your optimal step size

$$f(\boldsymbol{x}^{(0)} - \epsilon \boldsymbol{g}) \approx f(\boldsymbol{x}^{(0)}) - \epsilon \boldsymbol{g}^{\top} \boldsymbol{g} + \frac{1}{2} \epsilon^2 \boldsymbol{g}^{\top} \boldsymbol{H} \boldsymbol{g}.$$
(4.9)

$$\epsilon^* = \frac{g^{\top}g}{g^{\top}Hg}$$

Big eigenv
down if you
eige

(4.10)
 Big gradients speed you up

values slow you align with their envectors

Each step is better, but evaluating each one is very expensive

4 Deep Learning

Deep Learning as LEGO for adults How to build your best model

Deep Learning as LEGO for adults How to build your best model

DeepMind, 2022

How to adjust this input, if my output needs to change?

Artificial Neurons Not biologically plausible, but still very useful

DeepMind, 2022

The Perceptron (Rosenblatt, 1958) Not biologically plausible, but still very useful

$$f(\mathbf{x}) = egin{cases} 1 & ext{if } \mathbf{w} \cdot \mathbf{x} + b > 0, \ 0 & ext{otherwise} \end{cases}$$

The Perceptron (Rosenblatt, 1958) Not biologically plausible, but still very useful

$$\mathbf{x}+b>0,$$
wise

The perceptron can solve AND and OR

Linear problems can be solved

epoch 1 error 0.000

x[1]

epoch 1 error 1.000

x[1]

Perceptron on linearly separable data Linear problems can be solved

epoch 1 error 5.500

The perceptron cannot solve XOR Minsky & Papert, 1969: Dawn of the first AI winter

epoch 1 error 1.500

The secret sauce (1/2): Multilayer Perceptrons **Backpropagation allowed the use of deeper networks**

The secret sauce (1/2): Multilayer Perceptrons **Backpropagation allowed the use of deeper networks**

Average over all training examples Cost of one example

How do we tune hidden neurons Backpropagation allowed the use of deeper networks

DeepMind, 2022

The secret sauce (1/2): Multilayer Perceptrons

Backpropagation allowed the use of deeper networks

$$Cost \longrightarrow C_0(\dots) = (a^{(L)} - y)^2$$

$${}^{(L)} = w^{(L)}a^{(L-1)} + b^{(L)}$$

$${}^{(L)} = \sigma(z^{(L)})$$

$$0.48 \qquad 0.66 \qquad 0.66$$

$$a^{(L-1)} \qquad a^{(L)} \qquad y$$

YouTube, 3B1B

The secret sauce (2/2): Activation functions Non-linearities allow us to solve non-linear problems

Activation functions are often called non-linearities. Activation functions are applied **point-wise**.

One of the most commonly used activation functions. Made math analysis of networks much simpler.

DeepMind, 2022

Solve XOR with just 2 hidden neurons

- Hidden layers bend and deform input space

- Last linear model does linear classification
- Non-linear transformations are key for deep learning!
- Our network became a feature extractor!

What is deep lerning doing? **Transforming data non-linearly into a better representation**

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, Yoshua Bengio. On the Number of Linear Regions of **Deep Neural Networks** Arxiv (2014)

What is deep lerning doing? **Transforming data non-linearly into a better representation**

Yang Song, YT Talk

What is deep lerning doing? **Transforming data non-linearly into a better representation**

Let's try it ourselves

See the power of hidden layers

http://playground.tensorflow.org/

Feature/Representation engineering is hard The Deep Learning way: Let the network figure it out for you

~·

Ň

Deep Learning performs feature extraction The deeper the network, the more complex the patterns can be

Deep learning , , , , , , , Implicit feature extraction Prediction

Unstructured data

Structured data

feature extraction

"Manual"

	Sepal length	Sepal width	Petal length	Petal width
Flower 1	5.1	3.5	1.4	0.3
Flower 2	4.9	3.0	1.4	0.2
Flower 3	5.9	3.0	5.1	1.8

Conventional machine learning

The demons in the pandemonium Selfridge, 1959: Pattern recognition triggers downstream cognition

The demons in the pandemonium Trunk versus head

Deep Lerning as feature extractors Trunk versus head

Pejo, Balazs, et al. "Collaborative Drug Discovery: Inference-level Data Protection Perspective." *arXiv preprint arXiv:2205.06506* (2022).

Deep Lerning as feature extractors Trunk versus head

Adapted under CC BY 3.0 license from: Kalinin, Alexandr A., et al. "Deep learning in pharmacogenomics: from gene regulation to patient stratification." *Pharmacogenomics* 19.7 (2018): 629-650.

Regularisation: How do we avoid overfitting? Machine learning models like to overfit your data

Capacity

Regularisation: How do we avoid overfitting? Machine learning models like to overfit your data

Explicit Regularisation

-> Add reg. term to loss function:

- $-\sum_{w \in \theta} ||w||_1$
- $-\sum_{w \in \theta} ||w||_2$
- $-\sum_{w \in \theta} ||w||_{\infty}$
- $-\sum_{x} p(x) \log(x)$

Implicit Regularisation

-> Various hacks to improve optimisation

- data augmentation
- dropout
- early stopping
- label smoothing
- Batch/Layer Normalisation

Neural networks perform implicit feature extraction and are optimized via gradient descent.

Outlook for Part II

1. Images: Convolutional Neural Networks

2. Sequences: RNNs + Transformers

3. Current developments