
WiSe 2023/24, Heidelberg University

Machine Learning for Biochemistry
L2, Structural Bioinformatics

Overview

1. Types of Machine Learning

2. Linear Models

3. Gradient Descent

4. Deep Learning

5. Outlook for what’s to come

Book Recommendations
The Classics

Book Recommendations
Background and more introductory books

1 Types of Machine Learning

Techleer.com/UvA ML1 Course

exxactcorp.com

AI is more than just Deep Learning

2 Linear Models

What is a linear model?
Adjust your free parameter based on some loss

CHAPTER 5. MACHINE LEARNING BASICS

�1.0 �0.5 0.0 0.5 1.0

x1

�3

�2

�1

0

1

2

3

y

Linear regression example

0.5 1.0 1.5

w1

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
S
E

(t
ra

in
)

Optimization of w

Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
each containing one feature. Because there is only one feature, the weight vector w

contains only a single parameter to learn, w1. (Left)Observe that linear regression learns
to set w1 such that the line y = w1x comes as close as possible to passing through all the
training points. (Right)The plotted point indicates the value of w1 found by the normal
equations, which we can see minimizes the mean squared error on the training set.

) rw

⇣
X

(train)
w � y

(train)
⌘> ⇣

X
(train)

w � y
(train)

⌘
= 0 (5.9)

) rw

⇣
w

>
X

(train)>
X

(train)
w � 2w

>
X

(train)>
y

(train) + y
(train)>

y
(train)

⌘
= 0

(5.10)
) 2X

(train)>
X

(train)
w � 2X

(train)>
y

(train) = 0 (5.11)

) w =
⇣
X

(train)>
X

(train)
⌘�1

X
(train)>

y
(train) (5.12)

The system of equations whose solution is given by equation 5.12 is known as
the normal equations. Evaluating equation 5.12 constitutes a simple learning
algorithm. For an example of the linear regression learning algorithm in action,
see figure 5.1.

It is worth noting that the term linear regression is often used to refer to
a slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

ŷ = w
>
x + b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter

109

What is a linear model?
Adjust your free parameter based on some loss

CHAPTER 5. MACHINE LEARNING BASICS

�1.0 �0.5 0.0 0.5 1.0

x1

�3

�2

�1

0

1

2

3

y

Linear regression example

0.5 1.0 1.5

w1

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
S
E

(t
ra

in
)

Optimization of w

Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
each containing one feature. Because there is only one feature, the weight vector w

contains only a single parameter to learn, w1. (Left)Observe that linear regression learns
to set w1 such that the line y = w1x comes as close as possible to passing through all the
training points. (Right)The plotted point indicates the value of w1 found by the normal
equations, which we can see minimizes the mean squared error on the training set.

) rw

⇣
X

(train)
w � y

(train)
⌘> ⇣

X
(train)

w � y
(train)

⌘
= 0 (5.9)

) rw

⇣
w

>
X

(train)>
X

(train)
w � 2w

>
X

(train)>
y

(train) + y
(train)>

y
(train)

⌘
= 0

(5.10)
) 2X

(train)>
X

(train)
w � 2X

(train)>
y

(train) = 0 (5.11)

) w =
⇣
X

(train)>
X

(train)
⌘�1

X
(train)>

y
(train) (5.12)

The system of equations whose solution is given by equation 5.12 is known as
the normal equations. Evaluating equation 5.12 constitutes a simple learning
algorithm. For an example of the linear regression learning algorithm in action,
see figure 5.1.

It is worth noting that the term linear regression is often used to refer to
a slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

ŷ = w
>
x + b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter

109

What is a linear model?
Adjust your free parameter based on some loss

CHAPTER 5. MACHINE LEARNING BASICS

�1.0 �0.5 0.0 0.5 1.0

x1

�3

�2

�1

0

1

2

3

y

Linear regression example

0.5 1.0 1.5

w1

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
S
E

(t
ra

in
)

Optimization of w

Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
each containing one feature. Because there is only one feature, the weight vector w

contains only a single parameter to learn, w1. (Left)Observe that linear regression learns
to set w1 such that the line y = w1x comes as close as possible to passing through all the
training points. (Right)The plotted point indicates the value of w1 found by the normal
equations, which we can see minimizes the mean squared error on the training set.

) rw

⇣
X

(train)
w � y

(train)
⌘> ⇣

X
(train)

w � y
(train)

⌘
= 0 (5.9)

) rw

⇣
w

>
X

(train)>
X

(train)
w � 2w

>
X

(train)>
y

(train) + y
(train)>

y
(train)

⌘
= 0

(5.10)
) 2X

(train)>
X

(train)
w � 2X

(train)>
y

(train) = 0 (5.11)

) w =
⇣
X

(train)>
X

(train)
⌘�1

X
(train)>

y
(train) (5.12)

The system of equations whose solution is given by equation 5.12 is known as
the normal equations. Evaluating equation 5.12 constitutes a simple learning
algorithm. For an example of the linear regression learning algorithm in action,
see figure 5.1.

It is worth noting that the term linear regression is often used to refer to
a slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

ŷ = w
>
x + b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter

109

MSE (Mean-squared error):

What is a train versus a test dataset?
Evaluate how well your model generalises

Why limit yourself to linear models?
Varying the degree of basis function results in different fits

CHAPTER 5. MACHINE LEARNING BASICS

have more parameters than training examples. We have little chance of choosing
a solution that generalizes well when so many wildly different solutions exist. In
this example, the quadratic model is perfectly matched to the true structure of
the task so it generalizes well to new data.

x0

y

Underfitting

x0

y

Appropriate capacity

x0

y

Overfitting

Figure 5.2: We fit three models to this example training set. The training data was
generated synthetically, by randomly sampling x values and choosing y deterministically
by evaluating a quadratic function. (Left)A linear function fit to the data suffers from
underfitting—it cannot capture the curvature that is present in the data. (Center)A
quadratic function fit to the data generalizes well to unseen points. It does not suffer from
a significant amount of overfitting or underfitting. (Right)A polynomial of degree 9 fit to
the data suffers from overfitting. Here we used the Moore-Penrose pseudoinverse to solve
the underdetermined normal equations. The solution passes through all of the training
points exactly, but we have not been lucky enough for it to extract the correct structure.
It now has a deep valley in between two training points that does not appear in the true
underlying function. It also increases sharply on the left side of the data, while the true
function decreases in this area.

So far we have described only one way of changing a model’s capacity: by
changing the number of input features it has, and simultaneously adding new
parameters associated with those features. There are in fact many ways of changing
a model’s capacity. Capacity is not determined only by the choice of model. The
model specifies which family of functions the learning algorithm can choose from
when varying the parameters in order to reduce a training objective. This is called
the representational capacity of the model. In many cases, finding the best
function within this family is a very difficult optimization problem. In practice,
the learning algorithm does not actually find the best function, but merely one
that significantly reduces the training error. These additional limitations, such as

113

Always look at your test set!
Machine learning models like to overfit your data

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
rr

or

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||

2
2.

The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a

115

The Bias-Variance Trade-Off
B

(Goodfellow 2016)

Bias and Variance

CHAPTER 5. MACHINE LEARNING BASICS

The MSE measures the overall expected deviation—in a squared error sense—
between the estimator and the true value of the parameter ✓. As is clear from
equation 5.54, evaluating the MSE incorporates both the bias and the variance.
Desirable estimators are those with small MSE and these are estimators that
manage to keep both their bias and variance somewhat in check.

Capacity

Bias Generalization
error Variance

Optimal
capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
section 5.2 and figure 5.3.

The relationship between bias and variance is tightly linked to the machine
learning concepts of capacity, underfitting and overfitting. In the case where gen-
eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in figure 5.6, where we see again the U-shaped
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true

130

Figure 5.6

3 Gradient Descent

How do we optimize our model?CHAPTER 5. MACHINE LEARNING BASICS

�1.0 �0.5 0.0 0.5 1.0

x1

�3

�2

�1

0

1

2

3

y

Linear regression example

0.5 1.0 1.5

w1

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
S
E

(t
ra

in
)

Optimization of w

Figure 5.1: A linear regression problem, with a training set consisting of ten data points,
each containing one feature. Because there is only one feature, the weight vector w

contains only a single parameter to learn, w1. (Left)Observe that linear regression learns
to set w1 such that the line y = w1x comes as close as possible to passing through all the
training points. (Right)The plotted point indicates the value of w1 found by the normal
equations, which we can see minimizes the mean squared error on the training set.

) rw

⇣
X

(train)
w � y

(train)
⌘> ⇣

X
(train)

w � y
(train)

⌘
= 0 (5.9)

) rw

⇣
w

>
X

(train)>
X

(train)
w � 2w

>
X

(train)>
y

(train) + y
(train)>

y
(train)

⌘
= 0

(5.10)
) 2X

(train)>
X

(train)
w � 2X

(train)>
y

(train) = 0 (5.11)

) w =
⇣
X

(train)>
X

(train)
⌘�1

X
(train)>

y
(train) (5.12)

The system of equations whose solution is given by equation 5.12 is known as
the normal equations. Evaluating equation 5.12 constitutes a simple learning
algorithm. For an example of the linear regression learning algorithm in action,
see figure 5.1.

It is worth noting that the term linear regression is often used to refer to
a slightly more sophisticated model with one additional parameter—an intercept
term b. In this model

ŷ = w
>
x + b (5.13)

so the mapping from parameters to predictions is still a linear function but the
mapping from features to predictions is now an affine function. This extension to
affine functions means that the plot of the model’s predictions still looks like a
line, but it need not pass through the origin. Instead of adding the bias parameter

109

How do we optimize our model?
Follow the gradient

CHAPTER 4. NUMERICAL COMPUTATION

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

x

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

Global minimum at x = 0.
Since f

0(x) = 0, gradient
descent halts here.

For x < 0, we have f
0(x) < 0,

so we can decrease f by
moving rightward.

For x > 0, we have f
0(x) > 0,

so we can decrease f by
moving leftward.

f(x) = 1
2x

2

f
0(x) = x

Figure 4.1: An illustration of how the gradient descent algorithm uses the derivatives of a
function can be used to follow the function downhill to a minimum.

We assume the reader is already familiar with calculus, but provide a brief
review of how calculus concepts relate to optimization here.

Suppose we have a function y = f(x), where both x and y are real numbers.
The derivative of this function is denoted as f 0(x) or as dy

dx
. The derivative f 0(x)

gives the slope of f(x) at the point x. In other words, it specifies how to scale
a small change in the input in order to obtain the corresponding change in the
output: f(x + ✏) ⇡ f(x) + ✏f 0(x).

The derivative is therefore useful for minimizing a function because it tells
us how to change x in order to make a small improvement in y. For example,
we know that f(x � ✏ sign(f 0(x))) is less than f(x) for small enough ✏. We can
thus reduce f(x) by moving x in small steps with opposite sign of the derivative.
This technique is called gradient descent (Cauchy, 1847). See figure 4.1 for an
example of this technique.

When f 0(x) = 0, the derivative provides no information about which direction
to move. Points where f 0(x) = 0 are known as critical points or stationary
points. A local minimum is a point where f(x) is lower than at all neighboring
points, so it is no longer possible to decrease f(x) by making infinitesimal steps.
A local maximum is a point where f(x) is higher than at all neighboring points,

83

How can I imagine that?
Think about a ball rolling down the loss landscape

Animations: Nick Gale

How can I imagine that?
Think about a ball rolling down the loss landscape

Animations: Nick Gale

Gradient Descent in formulas
Going in the opposite direction

https://www.ruder.io/optimizing-gradient-descent/

Going down the gradient
Local Minima can become a problem

Animations: Nick Gale

Going down the gradient
Local Minima can become a problem

Animations: Nick Gale

Learning Rate
The first hyperparameter you should check if trouble arises

Animations: Nick Gale

Vanilla Gradient Descent is slow
Speed it up by only looking at one data point at a time

Animations: Nick Gale

Vanilla GD

Stochastic GD

How can I imagine that?
Planned and cautious versus spontaneous and chaotic

analyticsvidhya.com

Mini-batch GD: The best of both worlds
Only look at a subset of your data for each update step

https://www.ruder.io/optimizing-gradient-descent/

Stochastic GD

Mini-batch GD

analyticsvidhya.com

Mini-batch GD: The best of both worlds
Only look at a subset of your data for each update step

Which GD to choose?
In practice, mini-batch is often a good choice

https://www.ruder.io/optimizing-gradient-descent/

Real-life optimisation is hard
We do not expect to find the global minimum in most cases

CHAPTER 4. NUMERICAL COMPUTATION

x

f
(x

)

Ideally, we would like
to arrive at the global
minimum, but this
might not be possible.

This local minimum
performs nearly as well as
the global one,
so it is an acceptable
halting point.

This local minimum performs
poorly and should be avoided.

Figure 4.3: Optimization algorithms may fail to find a global minimum when there are
multiple local minima or plateaus present. In the context of deep learning, we generally
accept such solutions even though they are not truly minimal, so long as they correspond
to significantly low values of the cost function.

critical points are points where every element of the gradient is equal to zero.
The directional derivative in direction u (a unit vector) is the slope of the

function f in direction u. In other words, the directional derivative is the derivative
of the function f(x + ↵u) with respect to ↵, evaluated at ↵ = 0. Using the chain
rule, we can see that @

@↵
f(x + ↵u) evaluates to u

>
rxf(x) when ↵ = 0.

To minimize f , we would like to find the direction in which f decreases the
fastest. We can do this using the directional derivative:

min
u,u>u=1

u
>
rxf(x) (4.3)

= min
u,u>u=1

||u||2||rxf(x)||2 cos ✓ (4.4)

where ✓ is the angle between u and the gradient. Substituting in ||u||2 = 1 and
ignoring factors that do not depend on u, this simplifies to minu cos ✓. This is
minimized when u points in the opposite direction as the gradient. In other
words, the gradient points directly uphill, and the negative gradient points directly
downhill. We can decrease f by moving in the direction of the negative gradient.
This is known as the method of steepest descent or gradient descent.

Steepest descent proposes a new point

x
0 = x � ✏rxf(x) (4.5)

85

We usually don’t even reach a local minimumCHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

�50 0 50 100 150 200 250

Training time (epochs)

�2

0

2

4

6

8

10

12

14

16

G
ra

d
ie

n
t

n
o
rm

0 50 100 150 200 250

Training time (epochs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
la

ss
ifi

ca
ti
o
n

er
ro

r
ra

te

Figure 8.1: Gradient descent often does not arrive at a critical point of any kind. In this
example, the gradient norm increases throughout training of a convolutional network used
for object detection. (Left)A scatterplot showing how the norms of individual gradient
evaluations are distributed over time. To improve legibility, only one gradient norm
is plotted per epoch. The running average of all gradient norms is plotted as a solid
curve. The gradient norm clearly increases over time, rather than decreasing as we would
expect if the training process converged to a critical point. (Right)Despite the increasing
gradient, the training process is reasonably successful. The validation set classification
error decreases to a low level.

network training task, one can monitor the squared gradient norm g
>
g and

the g
>
Hg term. In many cases, the gradient norm does not shrink significantly

throughout learning, but the g
>
Hg term grows by more than an order of magnitude.

The result is that learning becomes very slow despite the presence of a strong
gradient because the learning rate must be shrunk to compensate for even stronger
curvature. Figure 8.1 shows an example of the gradient increasing significantly
during the successful training of a neural network.

Though ill-conditioning is present in other settings besides neural network
training, some of the techniques used to combat it in other contexts are less
applicable to neural networks. For example, Newton’s method is an excellent tool
for minimizing convex functions with poorly conditioned Hessian matrices, but as
we argue in subsequent sections, Newton’s method requires significant modification
before it can be applied to neural networks.

280

Curse of Dimensionality

(Goodfellow 2016)

Curse of DimensionalityCHAPTER 5. MACHINE LEARNING BASICS

Figure 5.9: As the number of relevant dimensions of the data increases (from left to
right), the number of configurations of interest may grow exponentially. (Left)In this
one-dimensional example, we have one variable for which we only care to distinguish 10
regions of interest. With enough examples falling within each of these regions (each region
corresponds to a cell in the illustration), learning algorithms can easily generalize correctly.
A straightforward way to generalize is to estimate the value of the target function within
each region (and possibly interpolate between neighboring regions). (Center)With 2
dimensions it is more difficult to distinguish 10 different values of each variable. We need
to keep track of up to 10⇥10=100 regions, and we need at least that many examples to
cover all those regions. (Right)With 3 dimensions this grows to 103 = 1000 regions and at
least that many examples. For d dimensions and v values to be distinguished along each
axis, we seem to need O(vd) regions and examples. This is an instance of the curse of
dimensionality. Figure graciously provided by Nicolas Chapados.

The curse of dimensionality arises in many places in computer science, and
especially so in machine learning.

One challenge posed by the curse of dimensionality is a statistical challenge.
As illustrated in figure 5.9, a statistical challenge arises because the number of
possible configurations of x is much larger than the number of training examples.
To understand the issue, let us consider that the input space is organized into a
grid, like in the figure. We can describe low-dimensional space with a low number
of grid cells that are mostly occupied by the data. When generalizing to a new data
point, we can usually tell what to do simply by inspecting the training examples
that lie in the same cell as the new input. For example, if estimating the probability
density at some point x, we can just return the number of training examples in
the same unit volume cell as x, divided by the total number of training examples.
If we wish to classify an example, we can return the most common class of training
examples in the same cell. If we are doing regression we can average the target
values observed over the examples in that cell. But what about the cells for which
we have seen no example? Because in high-dimensional spaces the number of
configurations is huge, much larger than our number of examples, a typical grid cell
has no training example associated with it. How could we possibly say something

156

Figure 5.9

The higher-dimensional the data, the more we need of it

Momentum Optimisers
Have a memory of the past to overcome dire times

Momentum Optimisers
Have a memory of the past to overcome dire times

Momentum Optimisers
Have a memory of the past to overcome dire times

https://www.ruder.io/optimizing-gradient-descent/

Vanilla GD

Momentum GD

Momentum
Speeding things up when the gradient becomes shallow

Animations: Nick Gale

A Zoo of Momentum Methods…
ADAM is the standard default choice

https://www.ruder.io/optimizing-gradient-descent/

A Zoo of Momentum Methods…
ADAM is the standard default choice

Animations: Nick Gale

Back to learning rate: Is there an optimum?
Curvature helps outCHAPTER 4. NUMERICAL COMPUTATION

x

f
(x

)

Negative curvature

x

f
(x

)

No curvature

x

f
(x

)

Positive curvature

Figure 4.4: The second derivative determines the curvature of a function. Here we show
quadratic functions with various curvature. The dashed line indicates the value of the cost
function we would expect based on the gradient information alone as we make a gradient
step downhill. In the case of negative curvature, the cost function actually decreases faster
than the gradient predicts. In the case of no curvature, the gradient predicts the decrease
correctly. In the case of positive curvature, the function decreases slower than expected
and eventually begins to increase, so steps that are too large can actually increase the
function inadvertently.

figure 4.4 to see how different forms of curvature affect the relationship between
the value of the cost function predicted by the gradient and the true value.

When our function has multiple input dimensions, there are many second
derivatives. These derivatives can be collected together into a matrix called the
Hessian matrix. The Hessian matrix H(f)(x) is defined such that

H(f)(x)i,j =
@2

@xi@xj

f(x). (4.6)

Equivalently, the Hessian is the Jacobian of the gradient.
Anywhere that the second partial derivatives are continuous, the differential

operators are commutative, i.e. their order can be swapped:

@2

@xi@xj

f(x) =
@2

@xj@xi

f(x). (4.7)

This implies that Hi,j = Hj,i, so the Hessian matrix is symmetric at such points.
Most of the functions we encounter in the context of deep learning have a symmetric
Hessian almost everywhere. Because the Hessian matrix is real and symmetric,
we can decompose it into a set of real eigenvalues and an orthogonal basis of

87

Newton’s method: Using curvature
The Hessian tells you your optimal step size

Hessian
Each step is better, but evaluating each one is very expensive

Animations: Nick Gale

4 Deep Learning

Deep Learning as LEGO for adults
How to build your best model

DeepMind, 2022

Deep Learning as LEGO for adults
How to build your best model

DeepMind, 2022

A
B

DeepMind, 2022

Artificial Neurons
Not biologically plausible, but still very useful

≠
DeepMind, 2022

The Perceptron (Rosenblatt, 1958)
Not biologically plausible, but still very useful

DeepMind, 2022

The Perceptron (Rosenblatt, 1958)
Not biologically plausible, but still very useful

x1

x2

x3

y

w1

w2

w3

The perceptron can solve AND and OR
Linear problems can be solved

Perceptron on linearly separable data
Linear problems can be solved

The perceptron cannot solve XOR
Minsky & Papert, 1969: Dawn of the first AI winter

The secret sauce (1/2): Multilayer Perceptrons
Backpropagation allowed the use of deeper networks

The secret sauce (1/2): Multilayer Perceptrons
Backpropagation allowed the use of deeper networks

YouTube, 3B1B

How do we tune hidden neurons
Backpropagation allowed the use of deeper networks

DeepMind, 2022

The secret sauce (1/2): Multilayer Perceptrons
Backpropagation allowed the use of deeper networks

YouTube, 3B1B

The secret sauce (2/2): Activation functions
Non-linearities allow us to solve non-linear problems

DeepMind, 2022

Solve XOR with just 2 hidden neurons

- Hidden layers bend and deform input space

- Last linear model does linear classification

- Non-linear transformations are key for deep learning!

- Our network became a feature extractor!

What is deep lerning doing?
Transforming data non-linearly into a better representation

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho,
Yoshua Bengio. On the Number of Linear Regions of

Deep Neural Networks Arxiv (2014)

What is deep lerning doing?
Transforming data non-linearly into a better representation

Yang Song, YT Talk

𝑝!"#"

What is deep lerning doing?
Transforming data non-linearly into a better representation

Let’s try it ourselves
See the power of hidden layers

http://playground.tensorflow.org/

Feature/Representation engineering is hard
The Deep Learning way: Let the network figure it out for you

Deep Learning performs feature extraction
The deeper the network, the more complex the patterns can be

The demons in the pandemonium
Selfridge, 1959: Pattern recognition triggers downstream cognition

The demons in the pandemonium
Trunk versus head

Deep Lerning as feature extractors
Trunk versus head

Pejo, Balazs, et al. "Collaborative Drug Discovery: Inference-level Data Protection
Perspective." arXiv preprint arXiv:2205.06506 (2022).

Deep Lerning as feature extractors
Trunk versus head

Adapted under CC BY 3.0 license from: Kalinin, Alexandr A., et al. "Deep learning in pharmacogenomics:
from gene regulation to patient stratification." Pharmacogenomics 19.7 (2018): 629-650.

Regularisation: How do we avoid overfitting?
Machine learning models like to overfit your data

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
rr

or

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

the concept of non-parametric models. So far, we have seen only parametric
models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression,
which has a fixed-length vector of weights, the nearest neighbor regression model
simply stores the X and y from the training set. When asked to classify a test
point x, the model looks up the nearest entry in the training set and returns the
associated regression target. In other words, ŷ = yi where i = arg min ||Xi,: � x||

2
2.

The algorithm can also be generalized to distance metrics other than the L2 norm,
such as learned distance metrics (Goldberger et al., 2005). If the algorithm is
allowed to break ties by averaging the yi values for all Xi,: that are tied for nearest,
then this algorithm is able to achieve the minimum possible training error (which
might be greater than zero, if two identical inputs are associated with different
outputs) on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a

115

Regularisation: How do we avoid overfitting?
Machine learning models like to overfit your data

Implicit Regularisation

-> Various hacks to improve optimisation

- data augmentation

- dropout

- early stopping

- label smoothing

- Batch/Layer Normalisation

-

-

-

-

Explicit Regularisation

-> Add reg. term to loss function:

Neural networks perform implicit feature
extraction and are optimized via gradient
descent.

🥡 Takeaway 🥡

Outlook for Part II

1. Images: Convolutional Neural Networks

2. Sequences: RNNs + Transformers

3. Current developments

