UNIVERSITÄT Heidelberg

A Zoo of Models L3, Structural Bioinformatics

WiSe 2023/24, Heidelberg Universitys

How to make sense of all these models?

Find the inductive biases they instill in the network

Group equivariant

Recurrent

- Rotational invariance
- Repeating dynamics

- Locality
- Unordered

AlQuraishi, M., Sorger, P.K. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nat Methods 18, 1169–1180 (2021).

How to make sense of all these models?

Find the inductive biases they instill in the network

How to make sense of all these models?

Find the inductive biases they instill in the network

Recurrent

Translational invariance

- Rotational invariance
- Repeating dynamics
- Non-locality
- Locality
- Unordered

AlQuraishi, M., Sorger, P.K. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nat Methods 18, 1169–1180 (2021).

1. Images: Convolutional Neural Networks

2. Sequences: RNNs

3. Transformers

4. Current developments

1. Convolutional Neural Networks

How to deal with images Naive approach: unroll them and passt them into an MLP

Inductive Bias: Translational In-/Equivariance Leverage the symmetry of your data

Invariance

Equivariance

Why leverage symmetries? We need more data = our network is more efficient!

Training without translational symmetry

Training with translational symmetry

How do we do this in practice? Implement neural network layers that respect these symmetries

Input

Bernhard Kainz – Deep Learning

Convolutional Layers Reminder: Matrix multiplication

C = AB.

 $C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$

(2.4)(2.5)

(Goodfellow 2016)

Convolutional Layers

The weights are in the kernel

Convolutional Layers Convolution = Repeated Matrix Multiplication

Original image 6x6

How can I imagine that? Sliding the kernel over the image

Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

How can I imagine that? Multiple Kernels allow detecting multiple features

Pattern Recognition all over again

This time adjusted to the image case

F. Chollet, Deep Learning with Python

Pattern Recognition all over again

This time adjusted to the image case

Pattern Recognition all over againLook at it yourself!Google Brain: Feature VisualisationOpenAl: Microscope

Dataset Examples show us what neurons respond to in practice

Optimization isolates the causes of behavior from mere correlations. A neuron may not be detecting what you initially thought.

Baseball—or stripes? *mixed4a, Unit 6*

Avoid reducing size with padding Different ways to pad (zero-pad, mean-pad, ...)

Vincent Dumoulin, Francesco Visin - <u>A guide to</u> convolution arithmetic for deep learning

Make bigger jumps with strides

Vincent Dumoulin, Francesco Visin - <u>A guide to</u> convolution arithmetic for deep learning

Pooling: Shift-invariant operation Reduce size, but no learning involved

F. Chollet, Deep Learning with Python

Putting things together: A full CNN Conv. Layers -> Pooling -> FC Layers

LeNet (1998): CNNs become a thing

Exactly what we discussed, just bigger

LeNet (1998): CNNs become a thing Exactly what we discussed, just bigger

C1: feature maps INPUT 6@28x28 32x32 S2: f. maps 6@14x14 Subsampling Convolutions

2. RNNS

The classic landscape **One architecture per community**

Deep Belief Nets (+non-DL)

[1] CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png [2] RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

Lucas Beyer, Transformer Talk

The transformer's takeover One community at a time Reinf. Learning Computer Vision Natural Lang. Proc.

Translation

Speech

Graphs/Science

Lucas Beyer, Transformer Talk

Temperature

Towardsdatascience.com

Temperature

Towardsdatascience.com

Global Average Temperature Chan

From graphic by Ed Hawkins. Data: from FAG ES2k (and Had CRUT

Global Average Temperature Change

RNN: Recurrent Neural Networks

Making predictions with respect to time

RNN: Recurrent Neural Networks Making predictions with respect to time

Different tasks, different architectures

Making predictions with respect to time

RNNs have problems Vanishing Gradients cause short context lengths

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the gradient for the vanilla RNN unit.

distill.pub/2019/memorization-in-rnns/

RNNs have problems Vanishing Gradients cause short context lengths

gradient for the vanilla RNN unit.

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the

distill.pub/2019/memorization-in-rnns/

RNNs have problems Vanishing Gradients cause short context lengths

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the gradient for the vanilla RNN unit.

distill.pub/2019/memorization-in-rnns/

RNN variants tackle vanishing gradients Still, the problem of limited context length remains

RNN variants tackle vanishing gradients Still, the problem of limited context length remains

RNNs have problems Vanishing Gradients cause short context lengths Visualizing memorization in

RNNs

Inspecting gradient magnitudes in context can be a powerful tool to see when recurrent units use short-term or long-term contextual understanding.

context the formal study of gra education

context the formal study of gra education

context the formal study of gra education

ammar is an important part of	Nested LSTM
ammar is an important part of	LSTM
ammar is an important part of	GRU

distill.pub/2019/memorization-in-rnns/

RNNs have other problems, too No parallelisation possible

many to many

3. Transformers

Transformers to the rescue Parallel instead of sequential encoding with <u>attention</u>

jinglescode.github.io

What is Attention?

Allowing every word to be influenced by any other word

Bahdanau et al, 2014, arxiv

What is Attention? Apparently it is all you need

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Llion Jones* Google Research

llion@google.com

Aidan N. Gomez* † University of Toronto

aidan@cs.toronto.edu

Illia Polosukhin* [‡] illia.polosukhin@gmail.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

The Transformer Not as scary as it looks like

Vaswani et al, 2017, arxiv

The Transformer Not as scary as it looks like

Input Embedding

Our computer does not understand English

Vocabulary

One-hot vectors

Input Embedding From one-hot encodings to word embeddings

One-hot vectors

Word embeddings

Input Embedding Play with a few word embeddings yourself

https://lamyiowce.github.io/word2viz/

https://ronxin.github.io/wevi/

http://projector.tensorflow.org/

Positional Embedding

We must tell our computer what comes first and what later

INPUT е

suis

étudiant

The Illustrated Tranformer, Jay Allamar

Positional Embedding We must tell our computer what comes first and what later

étudiant

suis

The Illustrated Tranformer, Jay Allamar

Positional Embedding We must tell our computer what comes first and what later

$$P(k,2i) = \sin\left(\frac{k}{n^{2i/d}}\right)$$
$$P(k,2i+1) = \cos\left(\frac{k}{n^{2i/d}}\right)$$

The Illustrated Tranformer, Jay Allamar

-0.8

-0.4

Looking at everyone around you to determine your update

• Input: sequence of tensors $x_1, x_2, ... x_t$

Looking at everyone around you to determine your update

- Input: sequence of tensors $x_1, x_2, ... x_t$
- Output: sequence of tensors, each
 y₁, y₂, ..., y_t

$$y_i = \sum_j w_{ij} x_j$$

• Output: sequence of tensors, each one a weighted sum of the input sequence

Transformers from Scratch, peterbloem.nl

Looking at everyone around you to determine your update

- Input: sequence of tensors $x_1, x_2, ..., x_t$
- $y_1, y_2, ..., y_t$

$$y_i = \sum_j w_{ij} x_j$$

- weight is just a dot product $w'_{i} = x_i^T x_j$

• Output: sequence of tensors, each one a weighted sum of the input sequence

Transformers from Scratch, peterbloem.nl

Looking at everyone around you to determine your update

- Input: sequence of tensors $x_1, x_2, ... x_t$
- Output: sequence of tensors, each
 y₁, y₂, ..., y_t

$$y_i = \sum_j w_{ij} x_j$$

- weight is just a dot product
- make it sum to 1 $w_{ij} =$

• Output: sequence of tensors, each one a weighted sum of the input sequence

$$w_{ij}' = x_i^T x_j$$
$$\exp w_{ij}'$$
$$\frac{\sum_j \exp w_{ij}'}{\sum_j \exp w_{ij}'}$$

Transformers from Scratch, peterbloem.nl

Looking at everyone around you to determine your update

Learning the weights

Query, Key, Value

- Every input vector x_i is used in 3 ways:
 - Query
 - Key
 - Value

Learning the weights

Query, Key, Value

- Every input vector x_i is used in 3 ways:
 - Query What am I looking for?
 - Key What do I have?
 - Value What do I reveal/give to others?

Learning the weights

- We can process each input vector to fulfill the three roles with matrix multiplication
- Learning the matrices \rightarrow learning attention

What am I looking for?

What do I have? What do I reveal/give to others?

$$\mathbf{q}_{i} = \mathbf{W}_{q} \mathbf{x}_{i}$$

$$\mathbf{k}_{\mathbf{i}} = \mathbf{W}_{\mathbf{k}}\mathbf{x}_{\mathbf{i}}$$

$$v_i = W_v x_i$$

 $w'_{ij} = \mathbf{q}_i^{\mathsf{T}} \mathbf{k}_j$ $w_{ij} = \operatorname{softmax}(w'_{ij})$ $y_i = \sum_j w_{ij} v_j \, .$

Imagine you are in a library How do you answer a question you have?

- Query The question you have
- Key The titles books have on their spines
- **Information the book contains** - Value

Multi-head attention Looking at everyone around you to determine your update

- Multiple "heads" of attention just means learning different sets of W_q, W_k, and W_v matrices simultaneously.
- Implemented as just a single matrix...

 W^1_a

Multi-head attention Looking at everyone around you to determine your update

- Multiple "heads" of attention just means learning different sets of W_q, W_k, and W_v matrices simultaneously.
- Implemented as just a single matrix...

Multi-head attention Different heads attend to different parts in a sentence Attention Visualizations

It	is	Ē	this	spirit	that	Ø	majority	of	American	governments	have	passed	new	laws	since	2009	making	the
μ	is	Ë	this	spirit	that	a	majority	of	American	governments	have	passed	new	laws	since	2009	making	the

Multi-head attention The same applies for proteins

(a) Attention in head 12-4, which targets amino acid pairs that are close in physical space (see inset subsequence 117D-157I) but lie apart in the sequence. Example is a *de novo* designed TIM-barrel (5BVL) with characteristic symmetry.

(b) Attention in head 7-1, which targets binding sites, a key functional component of proteins. Example is HIV-1 protease (7HVP). The primary location receiving attention is 27G, a binding site for protease inhibitor small-molecule drugs.

Layer Normalization Standardize means and stds of input vectors

- Neural net layers work best when input vectors have uniform mean and std in each dimension
- As inputs flow through the network, means and std's get blown out.
- Layer Normalization is a hack to reset things to where we want them in between layers.

Both parameters can be updated in equal proportions

The Transformer Not as scary as it looks like

Many good blogs about Transformers I leave it to you to choose the ones you like best

1.<u>The Illustrated Transformer (Pictures)</u> 2. The Annotated Transformer (Code) 3.<u>Transformers from Scratch</u> (Code) 5.<u>An Intuitive Introduction to Transformers</u> (Pictures) 6.<u>The Transformer – Attention is All You Need ()</u> 7.<u>Primers – Transformer (Long, detailed Deep Dive)</u> 8.Some Intuition on Attention and the Transformer (Short insights) 9.<u>Transformer Math (If you want to implement a big one in practice)</u>

- 4.<u>Transformers from Scratch</u> (Again, this time long detailed deep dive)

cays.

