A Zoo of Models

L3, Structural Bioinformatics

WiSe 2023/24, Heidelberg Universitys

How to make sense of all these models?

Find the inductive biases they instill in the network

Group equivariant

$\square \square \square$

Recurrent

How to make sense of all these models?

Find the inductive biases they instill in the network

Group equivariant

This week

Relational

[^0]
How to make sense of all these models?

Find the inductive biases they instill in the network

Recurrent

Next week

Overview

1. Images: Convolutional Neural Networks
2. Sequences: RNNs
3. Transformers
4. Current developments
5. Convolutional Neural Networks

How to deal with images

Naive approach: unroll them and passt them into an MLP

Inductive Bias: Translational In-/Equivariance

Leverage the symmetry of your data

Invariance

Equivariance

Why leverage symmetries?

We need more data = our network is more efficient!

Training without translational symmetry

Training with translational symmetry

How do we do this in practice?

Implement neural network layers that respect these symmetries

Convolutional Layers

Reminder: Matrix multiplication

$$
\begin{align*}
\boldsymbol{C} & =\boldsymbol{A} \boldsymbol{B} . \tag{2.4}\\
C_{i, j} & =\sum_{k} A_{i, k} B_{k, j} . \tag{2.5}
\end{align*}
$$

Convolutional Layers

The weights are in the kernel

Convolutional Layers

Convolution = Repeated Matrix Multiplication

3	1	1	2	8	4
1	10	7	3	12	6
2	3	5	1	1	3
1	4	1	2	6	5
3	2	1	3	7	2
9	2	6	2	5	1
Original image 6×6					

How can I imagine that?

Sliding the kernel over the image

How can I imagine that?

Multiple Kernels allow detecting multiple features

Pattern Recognition all over again

This time adjusted to the image case

Pattern Recognition all over again

This time adjusted to the image case

Pattern Recognition all over again

Look at it yourself!

Google Brain: Feature Visualisation

OpenAI: Microscope

Dataset Examples show
us what neurons
respond to in practice

Optimization isolates the causes of behavior from mere correlations A neuron may not be detecting what you initially thought.

Baseball-or stripes?
mixed4a, Unit 6

Avoid reducing size with padding

Different ways to pad (zero-pad, mean-pad, ...)

Make bigger jumps with strides

Pooling: Shift-invariant operation

Reduce size, but no learning involved

Putting things together: A full CNN

Conv. Layers -> Pooling -> FC Layers

LeNet (1998): CNNs become a thing

Exactly what we discussed, just bigger

LeNet (1998): CNNs become a thing

Exactly what we discussed, just bigger

2. RNNs

The classic landscape

One architecture per community

Computer Vision
Convolutional NNs (+ResNets)

Natural Lang. Proc.
Recurrent NNs (+LSTMs)

Speech
Deep Belief Nets (+non-DL)

Translation
Seq2Seq

The transformer's takeover

One community at a time

Computer Vision Natural Lang. Proc. Reinf. Learning

Speech

Translation

Graphs/Science

How to deal with sequential data?

You can only look into the past, not into the future

How to deal with sequential data?

You can only look into the past, not into the future

How to deal with sequential data?

You can only look into the past, not into the future

Global Average Temperature Chan

How to deal with sequential data?

You can only look into the past, not into the future

Global Average Temperature Change

RNN: Recurrent Neural Networks

Making predictions with respect to time

RNN: Recurrent Neural Networks

Making predictions with respect to time

Different tasks, different architectures

Making predictions with respect to time

one to one

one to many

many to one

many to many

many to many

RNNs have problems

Vanishing Gradients cause short context lengths

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the gradient for the vanilla RNN unit.

RNNs have problems

Vanishing Gradients cause short context lengths

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the gradient for the vanilla RNN unit.

RNNs have problems

Vanishing Gradients cause short context lengths

Vanishing Gradient: where the contribution from the earlier steps becomes insignificant in the gradient for the vanilla RNN unit.

RNN variants tackle vanishing gradients

Still, the problem of limited context length remains

RNN variants tackle vanishing gradients

Still, the problem of limited context length remains

RNNs have problems

Vanishing Gradients cause short context lengths

Visualizing memorization in RNNs

Inspecting gradient magnitudes in context can be a powerful tool to see when recurrent units use short-term or long-term contextual understanding.

```
context the formal study of grammar is an important part of Nested
education
```

context the formal study of grammar is an important part of

```
context the formal study of grammar is an important part of
education

\section*{RNNs have other problems, too}

\section*{No parallelisation possible}
many to many

3. Transformers

\section*{Transformers to the rescue}

\section*{Parallel instead of sequential encoding with attention}

RNN based Encoder


Transformer's Encoder


\section*{What is Attention?}

\section*{Allowing every word to be influenced by any other word}


\section*{What is Attention?}

\section*{Apparently it is all you need}

\section*{Attention Is All You Need}

\author{
Ashish Vaswani* \\ Google Brain avaswani@google.com
}

\author{
Noam Shazeer* \\ Google Brain noam@google.com
}
Niki Parmar*
Google Research nikip@google.com

Jakob Uszkoreit*
Google Research
usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez* \(\dagger\)
University of Toronto
aidan@cs.toronto.edu

Lukasz Kaiser*
Google Brain
lukaszkaiser@google.com

\section*{The Transformer}

\section*{Not as scary as it looks like}


\section*{The Transformer}

\section*{Not as scary as it looks like}


\section*{Input Embedding}

\section*{Our computer does not understand English}

\section*{Vocabulary}

One-hot vectors

\section*{Input Embedding}

From one-hot encodings to word embeddings
One-hot vectors
Word embeddings

\section*{Input Embedding}

\section*{Play with a few word embeddings yourself}
https://lamyiowce.github.io/word2viz/
https://ronxin.github.io/wevi/
http://projector.tensorflow.org/

\section*{Positional Embedding}

\section*{We must tell our computer what comes first and what later}

suis


INPUT
Je
étudiant

\section*{Positional Embedding}

\section*{We must tell our computer what comes first and what later}


\section*{Positional Embedding}

\section*{We must tell our computer what comes first and what later}

\[
\begin{aligned}
P(k, 2 i) & =\sin \left(\frac{k}{n^{2 i / d}}\right) \\
P(k, 2 i+1) & =\cos \left(\frac{k}{n^{2 i / d}}\right)
\end{aligned}
\]

\section*{Attention}

\section*{Looking at everyone around you to determine your update}
- Input: sequence of tensors
\(x_{1}, x_{2}, \ldots x_{t}\)

\section*{Attention}

\section*{Looking at everyone around you to determine your update}
- Input: sequence of tensors
\(x_{1}, x_{2}, \ldots x_{t}\)
- Output: sequence of tensors, each one a weighted sum of the input sequence
\[
\begin{aligned}
& \mathbf{y}_{1}, y_{2}, \ldots, \mathbf{y}_{\mathrm{t}} \\
& \mathbf{y}_{\mathrm{i}}=\sum_{j} w_{i j} \boldsymbol{x}_{\mathrm{j}}
\end{aligned}
\]

\section*{Attention}

\section*{Looking at everyone around you to determine your update}
- Input: sequence of tensors
\(x_{1}, x_{2}, \ldots x_{t}\)
- Output: sequence of tensors, each one a weighted sum of the input sequence
\[
\begin{aligned}
& \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{t}} \\
& \mathbf{y}_{\mathrm{i}}=\sum_{j} w_{i j} \boldsymbol{x}_{\mathrm{j}}
\end{aligned}
\]
- weight is just a dot product \(\quad w_{i j}^{\prime}=\boldsymbol{x}_{i}{ }^{\top} \boldsymbol{x}_{j}\)

\section*{Attention}

\section*{Looking at everyone around you to determine your update}
- Input: sequence of tensors
\[
x_{1}, x_{2}, \ldots x_{t}
\]
- Output: sequence of tensors, each one a weighted sum of the input sequence
\[
\begin{aligned}
& \mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, y_{t} \\
& \mathbf{y}_{i}=\sum_{j} w_{i j} \boldsymbol{x}_{j}
\end{aligned}
\]
- weight is just a dot product \(\quad \boldsymbol{w}_{i j}^{\prime}=\boldsymbol{x}_{i}{ }^{\top} \boldsymbol{x}_{\mathrm{j}}\)
- make it sum to 1
\[
w_{i j}=\frac{\exp w_{i j}^{\prime}}{\sum_{j} \exp w_{i j}^{\prime}}
\]

\section*{Attention}

\section*{Looking at everyone around you to determine your update}


\section*{Attention}

\section*{Learning the weights}

\section*{Query, Key, Value}
- Every input vector \(x \_i\) is used in 3 ways:
- Query
- Key
- Value


\section*{Attention}

\section*{Learning the weights}

\section*{Query, Key, Value}
- Every input vector \(x\) _ \(i\) is used in 3 ways:
- Query What am I looking for?
- Key What do I have?
- Value What do I reveal/give to others?


\section*{Attention}

\section*{Learning the weights}
- We can process each input vector to fulfill the three roles with matrix multiplication
- Learning the matrices \(\rightarrow\) learning attention

What am I looking for? What do I have? What do I reveal/give to others?
\[
\mathbf{q}_{\mathrm{i}}=\mathbf{W}_{\mathrm{q}} \boldsymbol{x}_{\mathrm{i}} \quad \mathbf{k}_{\mathrm{i}}=\mathbf{W}_{\mathrm{k}} \boldsymbol{x}_{\mathrm{i}} \quad \boldsymbol{v}_{\mathrm{i}}=\mathbf{W}_{\boldsymbol{v}} \boldsymbol{x}_{\mathrm{i}}
\]
\[
\begin{aligned}
w_{i j}^{\prime} & =\mathbf{q}_{i}{ }^{\top} \mathbf{k}_{j} \\
w_{i j} & =\operatorname{softmax}\left(w_{i j}^{\prime}\right) \\
\boldsymbol{y}_{i} & =\sum_{j} w_{i j} \boldsymbol{v}_{j} .
\end{aligned}
\]

\section*{Imagine you are in a library}

\section*{How do you answer a question you have?}

- Query

The question you have
- Key

The titles books have on their spines
- Value

Information the book contains


\section*{Multi-head attention}

\section*{Looking at everyone around you to determine your update}
- Multiple "heads" of attention just means learning different sets of W_q, W_k, and W_v matrices simultaneously.
- Implemented as just a single matrix...


\section*{Multi-head attention}

\section*{Looking at everyone around you to determine your update}
- Multiple "heads" of attention just means learning different sets of W_q, W_k, and W_v matrices simultaneously.
- Implemented as just a single matrix...


\section*{Multi-head attention}

\section*{Different heads attend to different parts in a sentence}

\section*{Attention Visualizations}


\section*{Multi-head attention}

\section*{The same applies for proteins}

(a) Attention in head 12-4, which targets amino acid pairs that are close in physical space (see inset subsequence 117D-157I) but lie apart in the sequence. Example is a de novo designed TIMbarrel (5BVL) with characteristic symmetry.

(b) Attention in head 7-1, which targets binding sites, a key functional component of proteins. Example is HIV-1 protease (7HVP). The primary location receiving attention is 27 G , a binding site for protease inhibitor small-molecule drugs.

\section*{Layer Normalization}

\section*{Standardize means and stds of input vectors}
- Neural net layers work best when input vectors have uniform mean and std in each dimension


Both parameters can be updated in equal proportions
- As inputs flow through the network, means and std's get blown out.
- Layer Normalization is a hack to reset things to where we want them in between layers.


Gradient of larger parameter dominates the update

\section*{The Transformer}

\section*{Not as scary as it looks like}


\section*{Many good blogs about Transformers}

\section*{I leave it to you to choose the ones you like best}
1.The Illustrated Transformer (Pictures)
2.The Annotated Transformer (Code)
3.Transformers from Scratch (Code)
4.Transformers from Scratch (Again, this time long detailed deep dive)
5.An Intuitive Introduction to Transformers (Pictures)
6. The Transformer - Attention is All You Need ()
7.Primers - Transformer (Long, detailed Deep Dive)
8. Some Intuition on Attention and the Transformer (Short insights)
9.Transformer Math (If you want to implement a big one in practice)

\section*{4 Takeaway 14}

Model architectures are influenced by the inductive bias of the data. is present, while Respecting symmetry and making models scale well are two popular approaches these days.```


[^0]:    Translational invariance
    Rotational invariance
    Repeating dynamicsNon-locality
    Locality

