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1. Sets and where to find them



Outline of the road ahead

Incorporate relational and then geometric information
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|wo problems for molecules:

1. Variable length
2. Geometric information
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Deep Sets

Ignore relational information for now
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How do we want our network to behave?
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Permutations and Permutation Matrices

Formalising our intuition

[t will be useful to think about operators that change the node order
Such operations are known as permutations (there are n! of them)

e.g. a permutation (2, 4, 1, 3) maps X; < Xp, Xp < X4,X3 ¢ X1, X4 < X3

k : S
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Formalising our intuition

Within linear algebra, each permutation defines a | V| X

 Such matrices are called permutation matrices

» They have exactly one 1 in every row and column, zeroes elsewhere
* Their effect when left-multiplied is to permute rows of X, like so:

P(2,4,1,3)X —

0

o = O

1

o O O

0

_ 0 O

Permutations and Permutation Matrices

|V| matrix
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Permutations and Permutation Matrices

Formalising our intuition

Want: functions f (X) over sets that will not depend on the order
Equivalently: applying a permutation matrix shouldn’t modify result!

We arrive at a very useful notion of permutation invariance.
f (X) is permutation invariant if, for all permutation matrices P:

f(PX) = f(X)

Petar Velickovic



Deep Sets

How do we want our network to behave?

A very generic form is the Deep Sets model

fX) =o (@ v

LEV
where ¢ and ¢ are (learnable) functions, e.g. MLPs.

The sum aggregation is critical!
(other choices possible, e.g. max or avg)

We will use @ to denote any permutation-invariant operator.

Petar Velickovic



Deep Sets
How do we want our network to behave?

Permutation invariant models are good for set-level outputs
What if we would like answers at the node level?
We want to still be able to identify node outputs, which a

permutation-invariant aggregator would destroy!

We may instead seek functions that don’t change the node order
i.e. if we permute nodes, it doesn’t matter if we do it before or after!

Accordingly, we say that F(X) is permutation equivariant if, for all
permutation matrices P:

F(PX) = PF(X)

Petar Velickovic



Inductive Bias: Translational In-/Equivariance

Leverage the symmetry of your data

Invariance Equivariance

j
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Deep Sets

Analysing the update function

Deep Sets as a blueprint: (stacking) equivariant function(s), potentially
with an invariant tail---yields (m)any useful set neural nets!

Petar Velickovic



2. Graph Neural Networks (GNNs)



Outline of the road ahead

Incorporate relational and then geometric information
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What has changed?

We need to think about the edges as well!
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From Sets to Graph

Relational Information is back in the game
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Message-passing

Tell your neighbour what you know

Main difference: permutations now also accordingly act on the edges

We need to appropriately permute both rows and columns of A
When applying a permutation matrix P, this amounts to PAP'

We arrive at updated definitions of suitable functions over graphs:

Invariance: f (PX, PAPT) — f (X, A)
Equivariance: F(PX, PAPT) — PF(X, A)

Petar Velickovic



Message-passing

Tell your neighbour what you know

On sets, we enforced locality by transforming every node in isolation

Graphs give us a broader context: a node’s neighbourhood
For a node i, its (1-hop) neighbourhood, %;, is commonly defined as:

Ni={j:(G,j) €& V(i) €E))

Accordingly, we can extract neighbourhood features, Xy, , like so:
Important to not loose identical

XNi = {{ Xj ¢ J EN; }} neighbours, would happen with simple
set

and define a local function, f(x;, Xy,), operating over them.

(X, is a multiset; cf. {{ ... }} notation)

Petar Velickovic



Message-passing

Tell your neighbour what you know




Message-passing

A general framework for all graph-related predictions
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Message-passing

A general framework for all graph-related predictions
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Message-passing

A general framework for all graph-related predictions

Node classification

%/.
z; = g(h;)

Graph classification

26 = g (D;cy hi)

Inputs Latents

(X, A) (H, A)
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Message-passing

A general framework for all graph-related predictions

Node classification
Zj = Q(hz‘)

. Graph classification
L, ZGZQ(@ievhi)

7 Link prediction
Y | zij = g(hi, hy, )

Petar Velickovic



A unifying framework

Other architectures can be seen as message-passing GNNs!

N
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Sharing in space

/ Sharing in time \
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(a) Fully connected (b) Convolutional (c) Recurrent
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How to implement message passing?

Remember our DeepSet insights

As f is supposed to be a local and permutation-invariant function over
the neighbourhood features X, it effectively needs to be a neural
network over sets, potentially conditioned by x;.

Recalling the Deep Sets model and its universality, we can hence
assume the following generic equation (with added conditioning):

f(xiXx,) = ¢ | xi Dv(xux;)
JEN;
Note that this induces several free variables (IV;, ®, ¢, )

Petar Velickovic



The classic landscape

One architecture per community

> ' Xg ... ...
\ Chn Chb \(*l B vl :nb” 1)
\( ) ’\(>A P\‘(AA .........
X} «——; ke X} (_An, - ,XC et Xp (—‘ml A ' Xe
/ \ / \v .............. / \v ............
Chd Ci e » QU] e X} \ ------ »Mpd < Iy
Xd x(’ xd XP xd xe
Convolutional Attentional Message-passing
h; = o x, @ civ(x) h; = ¢ | x, @D a(xix;)u(x) h; = ¢ | xi, Puw(xi.x))
JEN JEN; JEN;

Petar Velickovic



Message-passing

Tell your neighbour what you know

m{") = Aca ({(s\”,s") | j € Ni})
G(t+1) _ UPD( (t) Et))
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Normal Graph Neural Networks

Message passing updates node features using local aggregation

m,gt) .— AGG ({{(sgt),s§t)) j € M}}) | Computat.ion tree:
Message passing gathers &
s .= Upp (Sgt) | mgt)) | propagates features beyond

local neighbourhoods.

Chaitanya Joshi



Fun Fact: Chemistry is crucial for GNNs

Many GNN advances came from computational chemistry

In fact, it can be argued that computational chemists invented the first
general-purpose GNNs!

 ChemNet (Kireev et al., CICS’95)

o Baskin et al. (CICS’97)

» Molecular Graph Networks (Merkwirth and Lengauer, CIM’05)

This drive continued well into the 2010s:
* Molecular fingerprinting GNNs (Duvenaud ef al., NeurIPS"15)
* GNNs for quantum chemistry (Gilmer ef al., ICML'17)

Petar Velickovic



The classic landscape

One architecture per community

In this work, Gilmer et al. tackle head-on the task of quantum property
predictions from small-molecule datasets (such as QM9)

Targets

Their target: replace expensive DFT

simulations with learnt GNN models E.wo, ...

~ 10°% seconds

Message Passing Neural Net
S
i W /% b W/ N\ /

~ 1072 seconds

Contribution is also theoretical:

Categorise all existing GNNs at
the time into the MPNN framework

This framework was generic enough to reach chemical accuracy on 11
out of 13 of the tasks within QM9, after a thorough architecture scan.

Petar Velickovic



What if we want other information?

So far we only considered node features

Node classification
z; = g(h;)

. Graph classificatior
26 =9 (Dicy i)

Link prediction
8l z;; = g(hs, by, ey)

Petar Velickovic



Extending the message passing framework

Edges and Graphs can have features too

Update edge features (using graph + relevant nodes)

hy, =y (xw Xvr Xyp) Xg)
Update node features (using updated relevant edges + graph)

h,=¢ (xu, @ hvu,xg)

UEN,,

Update graph features (using updated nodes + edges)

h; = p<€Bhu, b huv,xg)

uev (u,v)e€E

Lucas Beyer, Trasigioy@rikbRic



Make 1t as complex as you like!

All architectures discussed are special cases

Petar Velickovic



3. Geometry and Symmetry




Outline of the road ahead

Incorporate relational and then geometric information
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Applying our framework to molecules

Is there more to a structure than the 2D representation?

H
H
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Simm, Gregor NC, and José Miguel Hernandez-Lobato. "A generative
model for molecular distance geometry." ICML 2020




Systems with geometric & relational structure

Small Inorganic Catalysis

Molecules Crystals Systems

s - ; < w__;:.v'
._‘- '.-'.;;:'(—-: -’ .':..:."":-.-___ ‘t _@ ~

Ly >N
".‘\\ -, Y e <
\,\ ¥ " " B . :

Ty

Transportation & Robotic 3D Computer
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Geometric Graphs
A graph G=(A,S,X) embedded in Euclidean space

= A an nXn adjacency matrix.
= S e R™J: scalar features.
= X € R™*4: tensor features, e.g., coordinates.



Why geometric GNNs?

Supervised Learning: Predict functional properties

Geometric N Geometric

Graph GNN » Prediction

* Functional properties?
* Ligand binding affinity?

* Ligand efficacy?

Chaitanya Joshi



Why geometric GNNs?

Generative Modelling (L6): Desigh new molecules

. Geometric
GNN

Generative  Geometric
Model Graph

Chaitanya Joshi



How to deal with geometric graphs?

The problem of symmetry in input and output

= Jo describe geometric graphs

we use coordinate systems
= (1) and (2) use different coordinate
systems to describe the same
molecular geometry. (1 )

= \We can describe the transform
between coordinate systems
with symmetries of Euclidean (2)
space
= 3D rotations, translations

= However, output of traditional
GNNs given (1) and (2) as
completelv different!

Minkai Xu



How to deal with geometric graphs?

The problem of symmetry in input and output

= Beyond input space, output can also be
tensors

= Example: simulation (force prediction)

= @Given a molecule and a rotated copy, predicted
forces should be the same up to rotation

= (i.e., Predicted forces are equivariant to rotation)

» Current _ Geometric _ Next 2 /
T State GNN State | Ké
\ Dynamics ‘
Simulator

3

Minkai Xu



Inductive Bias: Translational In-/Equivariance

Leverage the symmetry of your data

Invariance Equivariance
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Generalising Invariance and Equivariance

Equivariance: Things change as they should

= Formal definition of Equivariance:
a function F: X = Y is equivariant if for a
transformation p it satisfies:

F o px(x) = py o F(x)
= Example: py, py are same rotation transformation

Minkai Xu



The classic landscape

Invariance: Things do not change at all!

Definition of Invariance:
afunction F: X - Y is
invariant if for a
transformation p it
satisfies:

F o px(x) = F(x)

Note: invariance is a special case
of equivariance where py is

defined as no transformation.

Fopx(x) = py o F(x)

\/ Yes, Dr. Beck

After roto-translation...

\/ Still Dr. Beck!

Minkai Xu



Inductive Biases = Respecting Symmetry

Choose your architecture based on your data type

Neural networks are specially designed for different data types
in order to make use of special features (symmetries) of the data.

Data type

Type of
neural

network

Images Text

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Morbi ultricies, justo ac
viverra euismod, justo odio
eleifend dolor, a imperdiet
qguam nibh finibus mauris.
Morbi lobortis a lorem id
dapibus. Interdum et
malesuada fames...

Recurrent
The meaning of a

together are more current word
important to each depends on what

other. came before.

Convolutional

Pixels closer

Spatial translation Time translation
symmetry symmetry

Graph

Graph

Data on nodes
interacts via edges

Permutation
symmetry

Geometric

Graph in 3D

Euclidean
Geometric data
“means” the same thing
even when we use
different coordinate
systems

uclidean
symmetry

Minkai Xu



4. Geometric GNNs




Why would we want to respect symmetry?

It makes our learning a lot more efficient!

Training without translational symmetry training without rotational symmetry

VVewweww Y\ \

Training with translational symmetry

training with symmetry
/ v
Minkai Xu




Why would we want to respect symmetry?

Less possible functions our network has to consider!

—

All learnable functions

All learnable All learnable

geometirc functions

functions constrained
by your data.

Functions you actually
wanted to learn.

Minkai Xu



How to construct geometric GNNs

Invariance vs equivariance

Two classes of Geometric GNNSs:

= |nvariant GNNSs for learning invariant scalar features
= Equivariant GNNs for learning equivariant tensor features.

Invariant functions vs. Equivariant functions

Minkai Xu



Geometric GNN message passing

Geometric GNNSs:
 update scalar and (optionally) vector features
 aggregate and update functions which retain transformation semantics

2

JjEN;

4 ij
>@
< E — C

mz-j

m" m{" = Aac ({(s\”, 8", 5", 5" @) | j € Ni})  (Aggregate)

] ) z 7

s, 5 = U (s, 5" (m@ ) (Update)

? Z

Chaitanya Joshis



Invariant GNN: SchNet (2017)

Using relative distances as invariant weights

SchNet makes W invariant
by scalarizing relative
positions 7;; with relative
distances d;; = ||7;||:

|7 ;]| are invariant to rotations

and translations

= =>each message passing layer
weight W is invariant

= => aggregated node
embeddings ). ; x; - W is invariant

= => therefore, node embeddings
are invariant!

X = (X W) =) x5 o Wi(r; —ry),
j

x': node embeddings at 1 layer
r. atomic coordinates

Minkai Xu



Why then equivariant GNNs?

Expanding what interactions our network can extract

= You have to guarantee that your input features already
contain any necessary equivariant interactions.

All invariant
All learnable functions

equivariant

‘ constrained by
functions

your data.

Functions you actually
wanted to learn.

OR

All learnable
invariant

functions.

Minkai Xu



Equivariant GNN: PaiNN (2021)

One architecture per community

PaiNN still take learnable
weights W conditioned on the

relative distance ||7;|| to control
message passing

However, differently, in PaiNN
each node has two features
(both scalar features s; and

vector features v;) L Q
a\Y 4 a : —h =
x i i | “]/I%[:;l é[i:l

Schutt, Kristof, Oliver Unke, and Michael Gastegger. "Equivariant message passing for the prediction of

tensorial properties and molecular spectra.” International Conference on Machine Learning. PMLR, 2021.

Minkai Xu



The Geometric GNN blueprint

Stack equivariant layers with an optional invariant pooling

Min

kai

Xu



5. Outlook to Applications



Geometric GNNs for Science

Structural Bioinformatics plays a key role

= Accelerate scientific simulation
= Molecule/Protein Design
= Biomolecule structure prediction

= Protein-molecule interaction
= Molecular simulation

https://generatebiomedicines.com/chroma

Minkai Xu



Geometric GNNs for Science

Structural Bioinformatics plays a key role

= Accelerate scientific simulation
= Molecule/Protein Design L8
= Biomolecule structure prediction L6

= Protein-molecule interaction L10
= Molecular simulation L9

https://generatebiomedicines.com/chroma

Minkai Xu
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We can model molecules as graphs and
process them via GNNs. If we want to
leverage geometric information, we can use
Geometric GNNs.



