UNIVERSITÄT HEIDELBERG

Protein Structure Prediction L5, Structural Bioinformatics

WiSe 2023/24, Heidelberg University

- **1.** The Problem and its History
- 2. Pre-AlphaFold2 World
- 3. AF2: The main ideas
- 4. AF2: The Evoformer
- 5. AF2: The Structure Module
- 6. AF2: Losses and other Details
- 7. Impact and Outlook

1. The Problem and its History

Protein Structure is important As the old dogma goes: structure determines function

Experimental structure determination 3 main methods, all of them a lot of work

X-Ray Crystallography

Cryo-EM

NMR

Experimental structure determination 3 main methods, all of them a lot of work

X-Ray Crystallography

Cryo-EM

The sequence-structure gap Cheaper sequencing widens it every year

Mohammed AlQuraihi, Blog

Protein Structure Prediction The "cheap" alternative

Protein Structure Prediction its hard Called a "grand challenge in biology" for a reason

xkcd

The balance between ab initio prediction and data-driven methods

S

The balance between ab initio prediction and data-driven methods

S Template-based Modelling (TBM) Utilise sequence alignments to "copy" similar residues

The balance between ab initio prediction and data-driven methods

S Template-based Modelling (TBM) Utilise sequence alignments to "copy" similar residues

S Molecular Dynamics AMBER ('81), CHARMM ('83)

S

The balance between ab initio prediction and data-driven methods

S Molecular Dynamics AMBER ('81), CHARMM ('83)

Fragment Assembly

Rosetta ('97), 1st CASP ('94), Threading ('91), BLAST ('90)

The balance between ab initio prediction and data-driven methods

S Molecular Dynamics AMBER ('81), CHARMM ('83)

Fragment Assembly Rosetta ('97), 1st CASP ('94),

Threading ('91), BLAST ('90)

Contact/Distance **Map Prediction**

The balance between *ab initio* prediction and data-driven methods

S Molecular Dynamics AMBER ('81), CHARMM ('83)

Fragment Assembly

Rosetta ('97), 1st CASP ('94), Threading ('91), BLAST ('90)

DL, first for maps, then end-to-end RaptorX ('17), AF ('18), RGN ('19), AF2 ('20)

Contact/Distance Map Prediction

Rapid progress in the last years Deep Learning pushed the latest methods into the usable regime

Mohammed AlQuraishi

2. Pre-AlphaFold2 World

How does a folding algorithm look like? Input and output can vary considerably

How does a folding algorithm look like? Input and output can vary considerably

What do give our model as input? Use evolutionary information to different degrees

Sequence Information

MSA = (#Sequences, Length, 20) **Multiple Sequence Alignment contains all raw information**

MACPRLVDSQ... MACPR-VDCN... MGCPRILDSH MGCGKIVESD M-CGKLIEAT... MACARV-DA

Covariance = (Length, Length) Covariance conserves 2nd order information

Average across sequences

MACPRLVDSQ... MACPR-VDCN... MGCPRILDSH... MGCGKIVESD ... M-CGKLIEAT ... MACARV-DAY ... MGCRRKLDCE ...

Coevolution = (Length, Length) Coevolution conserves 2nd order information

MACPRLVDSQ... MACPR-VDCN... MGCPRILDSH... MGCGKIVESD M-CGKLIEAT... MACARV-DAY MGCRRKLDCE...

How do people tackle the problem? **Classifying by what information you feed the model**

Physics-based approaches Following Anfinsen to predict structure

Co-evolution (2 nd order)	Full MSA
	₽.

Consider energetics to navigate folding Consistent trends across protein families

Folding energy landscapes

Protein energetics

Kuhlman, B., Bradley, P. Advances in protein structure prediction and design. *Nat Rev Mol Cell Biol*

Consider energetics to navigate folding

Monte Carlos Methods proved to be most efficient here Exploring the energy landscape

Conformation

Metropolis Monte Carlo

Force field calculations for each atom determine time progression in femtosecond steps

Monte Carlo moves

Fragment replacement

Rotamer substitution

> Kuhlman, B., Bradley, P. Advances in protein structure prediction and design. Nat Rev Mol Cell Biol

Templates improve structure prediction Templates can be found with sequence alignments

Co-evolution (2 nd order)	Full MSA
	*

Coevolution offered a different approach Use evolutionary information to infer geometric constraints

Coevolution: The Idea Residues that correlate are probably close in space

coevolution

Coevolution = (Length, Length) Coevolution conserves 2nd order information

MACPRLVDSQ... MACPR-VDCN... MGCPRILDSH... MGCGKIVESD M-CGKLIEAT... MACARV-DAY MGCRRKLDCE...

Deep Learning pushed co-evolution methods Advances from Computer Vision translated to Proteins

Sequence Information

Reminder: Image-to-Image CNNs detect localised patterns

Image-to-Image **Coevolution data used to predict contact/distance maps**

AF1: An Image-to-Image Model **Residual CNN used to predict distances and torsion angles**

Senior, A.W., Evans, R., Jumper, J. et al. Improved protein structure prediction using potentials from deep learning. Nature

Image-to-Image **Problem: Slow and inconsistent processing into final structure**

End-to-End Differentiability Optimising the output we want to optimise

End-to-End Differentiability Different geometrical representations of output possible

Geometrical representations

End-to-End Differentiability First of these models predicted torsion angles

Reminder: Sequence-to-Sequence RNNs update a hidden state, transformers process in parallel

jinglescode.github.io

Sequence-to-Sequence Use MSAs/PSSMs/... to predict a torsion angle sequence

RGN: End-to-end, but still an RNN RNNs struggle with long-range interactions, important in proteins

AF2: End-to-end DL with full MSA The DL Mantra: Use your model as feature extractor

Sequence Information

End-to-End Differentiability We want to optimise the output we are interested in: 3D Structures!

Sequence-to-Sequence **Use MSA to predict 3D structure directly**

Input

MACPRLVDSQ... MACPR-VDCN... MGCPRILDSH... MGCGKIVESD... M-CGKLIEAT... MACARV-DAY... MGCRRKLDCE...

AF2: solving the structure prediction problem? New records in terms of prediction accuracy

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. *Nature*

3. AF2: The main ideas

The road to understanding AF2 **Ranking based on difficulty, not quality (all these are great!)**

OPIG Blog Post + YT Video <u>1&2</u>

> AF2 Paper **+This lecture**

Nazim Bouatta's lecture series

Castorina/Burkov post + OpenFold

<u>AlQuraishi Blogpost</u> and AF2 SI

End-to-End Differentiability Directly supervise on the output we care about

My PTNG blog post

End-to-End Differentiability Directly supervise on the output we care about

FSLANMVK...

Input sequence

3D coordinates

Use both coevolution and geometric constraints **Both MSA and templates leveraged**

3D coordinates

Lukas Jarosch

Inductive Biases reflect protein biophysics **Communication encouraged between residues close in space**

AF2 Architecture Overview Reflects the main ideas discussed

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. <u>Nature</u>

The devil is in the detail... A lot of superb engineering determined the final architecture

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature

4. AF2: The Evoformer

The Evoformer Building an MSA and processing it via a transformer

Communication in the MSA Stack Row attention in a sequence; column attention between sequences

2-track architecture: Pair Representation Reason not only over evolution but also over geometry

Row-wise attention with pair bias Tell the MSA representation which residues to pay attention to

Pair representation updates MSA stack **Geometrical constraints inform coevolutionary search**

Coevolution: The Idea Residues that correlate are probably close in space

MSA stack updates pair representation Coevolution infers geometrical constraints (outer product mean)

Our old nemesis: Self-inconsistency As in AF1, "image" representations can contradict themselves

Inconsistent

The Triangular Inequality How to enforce this geometric constraint?

 κ ijik2 2 jkk

k

Triangular Updates Update pair representation in consistent manner

 $f() \quad (a_{ik}b_{jk})$ z_{ij} k

Communication is key How to go now from Evoformer output to structure?

5. AF2: The Structure Module

How to get from Evoformer to structure? **Clever part: No post-processing, everything end-to-end**

Protein as a triangle gas Break up the chain to allow structural exploration

Image: Dcrjsr, vectorised Adam Rędzikowski (CC BY 3.0, Wikipedia)

AF2 Presentation, John Jumper

Black Hole Initialisation Place all triangles at the origin intially

Reminder: Equivariance Leverage the symmetry of your data

Invariance

Equivariance

Reminder: Equivariance Leverage the symmetry of your data

Geometric keys and queries Backbone Update via IPA (Invariant Point Attention)

 $T_i := (R_i, \vec{t_i})$

Spraying key and query vectors **IPA: Invariant Point Attention**

Predicting the final structure Predict triangle positions+orientations+torsion angles

Predicting the final structure Use torsion angles to reconstruct side-chains

Communication in the trunk allow accurate head predictions

Embedding

Trunk

templates

6. AF2: Losses and other Details

AF2: Loss Functions, one per submodule Nudging the network to biophysically plausible predictions

 $\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} & \text{training} \\ 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} + 0.01\mathcal{L}_{\text{exp resolved}} + 1.0\mathcal{L}_{\text{viol}} & \text{fine-tuning} \end{cases}$

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature

FAPE Loss for Structure Module FAPE loss supervises relative residue positions

$\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} \\ 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} + 0.01\mathcal{L}_{\text{exp resolved}} + 1.0\mathcal{L}_{\text{viol}} \end{cases}$

Protein-protein FAPE loss

Protein-protein FAPE (single residue alignment)

training fine-tuning

- Loss on protein coordinates under local residue frame alignments
 - (same as in AlphaFold)
 - → relative positioning of protein residues

FAPE Loss for Structure Module Again needs to take care of equivariance

Aux Loss for Structure Module Nudging the network to biophysically plausible predictions

Distogram loss: For pair representation Forcing the network to reason about structure

Distogram loss: For pair representation Forcing the network to reason about structure

MSA Loss for MSA representation Force network to infer coevolutionary patterns

Conf Loss allows pLDDT metric Small to not destroy the prediction accuracy

AF2: Loss Functions Nudging the network to biophysically plausible predictions

$$\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} & \text{training} \\ 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} + 0.01\mathcal{L}_{\text{exp resolved}} + 1.0\mathcal{L}_{\text{viol}} & \text{fine-turbed} \end{cases}$$

$$\mathcal{L}_{\exp \text{ resolved}} = \max_{(i,a)} \left(-y_i^a \log p_i^{\exp \text{ resolved},a} - (1 - y_i^a) \log(1 - p_i^{\exp \text{ resolved},a}) \right)$$

Viol Loss for biophysically plausible structures Only used during fine-tuning, otherwise accuracy drop

 $\mathcal{L} = \begin{cases} 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} \\ 0.5\mathcal{L}_{\text{FAPE}} + 0.5\mathcal{L}_{\text{aux}} + 0.3\mathcal{L}_{\text{dist}} + 2.0\mathcal{L}_{\text{msa}} + 0.01\mathcal{L}_{\text{conf}} + 0.01\mathcal{L}_{\text{exp resolved}} + 1.0\mathcal{L}_{\text{viol}} \end{cases}$

$\mathcal{L}_{viol} = \mathcal{L}_{bondlength} + \mathcal{L}_{bondangle} + \mathcal{L}_{clash}$

7. Impact and Outlook

Easy targets – early structure hypothesis

Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

Jumper, J., Evans, R., Pritzel, A. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*

Hard targets – late structure hypothesis

Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

Jumper, J., Evans, R., Pritzel, A. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*

Unphysical structures explored

Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. *Nature*

AF2: Limitations Unaware of bound/unbound states

Example: beta-lactamase in complex with inhibitor molecules

AlphaFold2 prediction

Lukas Jarosch

AF2: Limitations Unaware of bound/unbound states

Example: adenylate-kinase binding to substrate

AlphaFold2 prediction

AF2: Limitations Susceptible to shallow MSAs

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. <u>Nature</u>

AF2: Limitations

Problems with less structured/more variable protein families

How to improve protein structure prediction? Subheading

How to improve protein structure prediction? Subheading

Are MSAs the best input we can use? Subheading

Input

MACPRLVDSQ... MACPR-VDCN... MGCPRILDSH... MGCGKIVESD... M-CGKLIEAT... MACARV-DAY... MGCRRKLDCE...

Are MSAs the best input we can use? Subheading

Input MACPRLVDSQ...

Are MSAs the best input we can use? Subheading

Protein Language Models Subheading

Structural Information emerges Unexpected consequence of self-supervised pretraining

Pretraining self-supervision on sequences only.

The ESM-2 language model is trained to predict amino acids that have been masked out of sequences across evolution. We discovered that, as a result of this training, information about the protein's structure emerges in the internal states of the model. This is surprising because the model has been trained only on sequences.

Structure emerges in the internal representations of the network from the self-supervision.

STRUCTURE PROJECTION

Deep Learning revolutionized protein structure prediction, but for applications many important challenges remain.