UNIVERSITÄT HEIDELBERG

Generative Modelling L7, Structural Bioinformatics

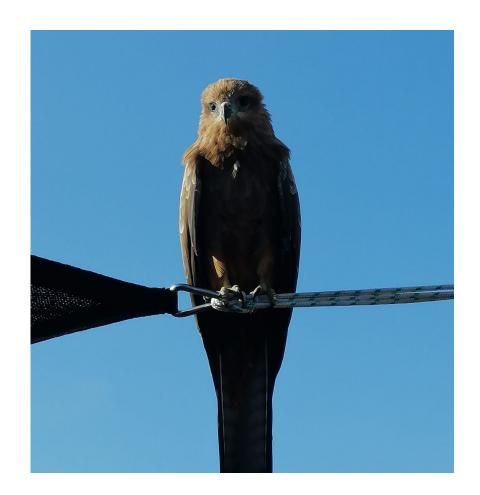
WiSe 2023/24, Heidelberg University

1. What is generative modelling?

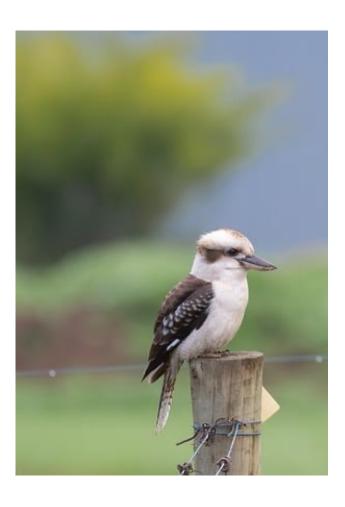
- 2. Autoencoders in all flavours (Classic/Denoising/Variational)
- **3. Diffusion Models**
- 4. Applications and Outlook

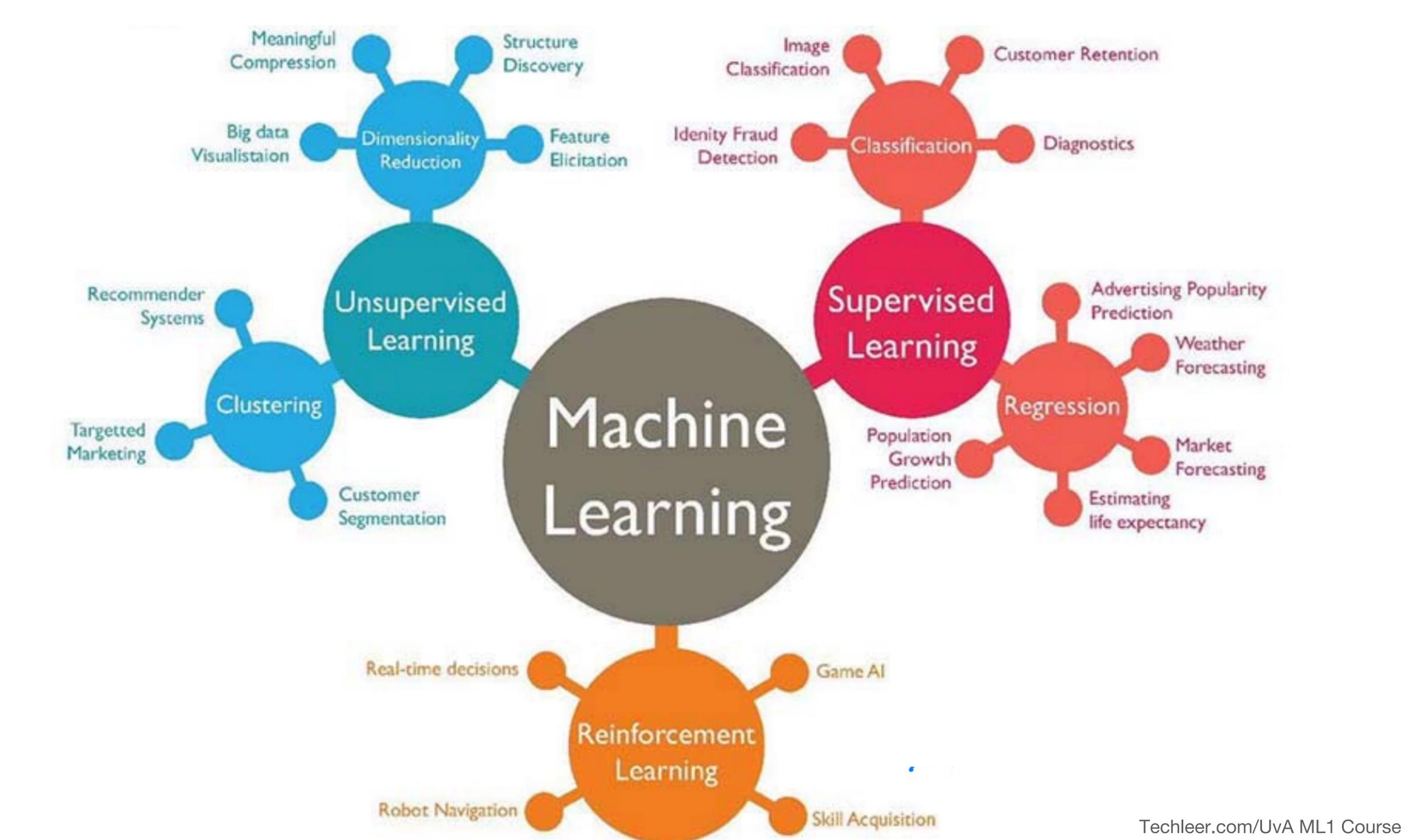
1. What is generative modelling?

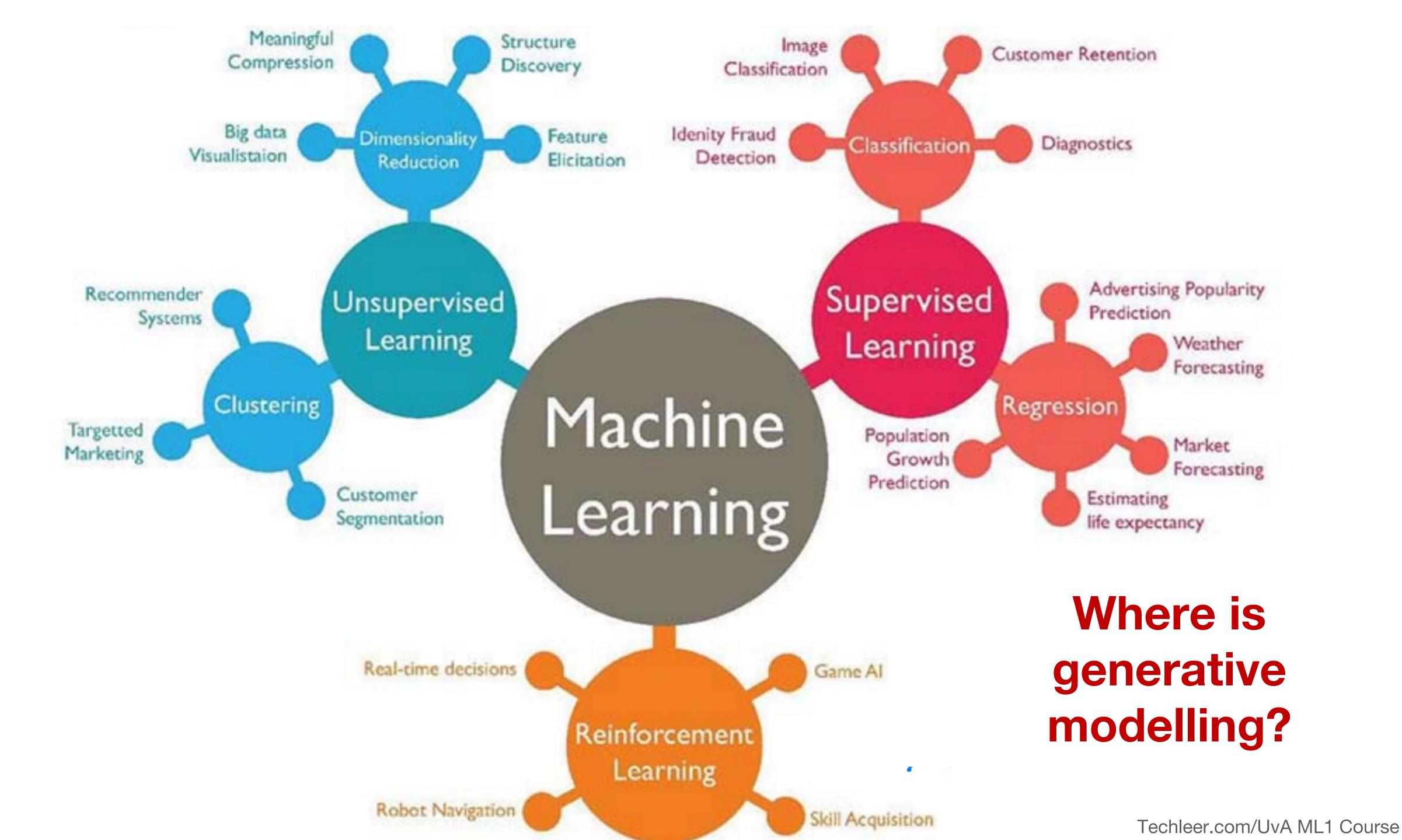
Basic Idea of Generative Modelling Given data, produce new data that looks similar



Generative Model







We can do classification in several ways Hard decisions (Decision rule) Input Data X Ulass Label

Dog

Classifier

We can do classification in several ways Hard decisions does not tell about uncertainty! **Input Data Class Label** $\boldsymbol{\chi}$

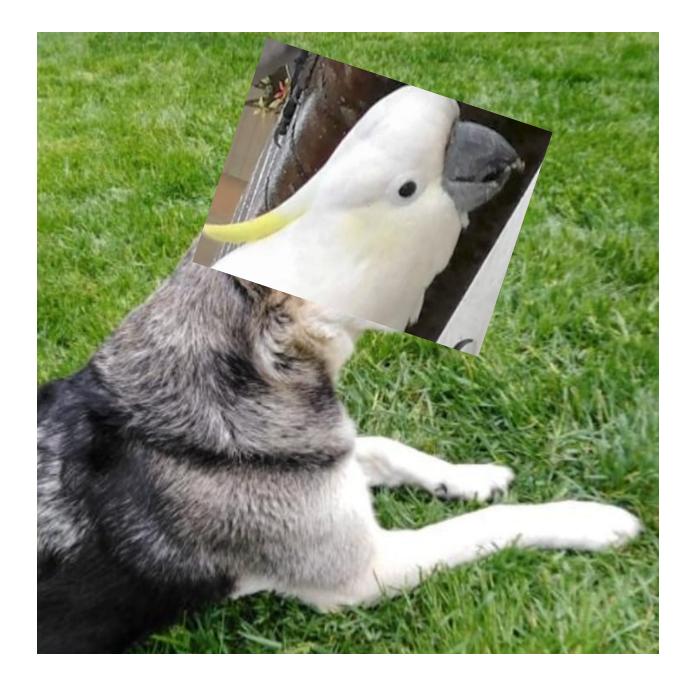
We can do classification in several ways **Soft decisions (probabilistic) Input Data** Prob. of label given data p(y|x) $\boldsymbol{\chi}$

Dog: 0.9 Bird: 0.1

Classifier

Bird: 0.95 Dog: 0.05

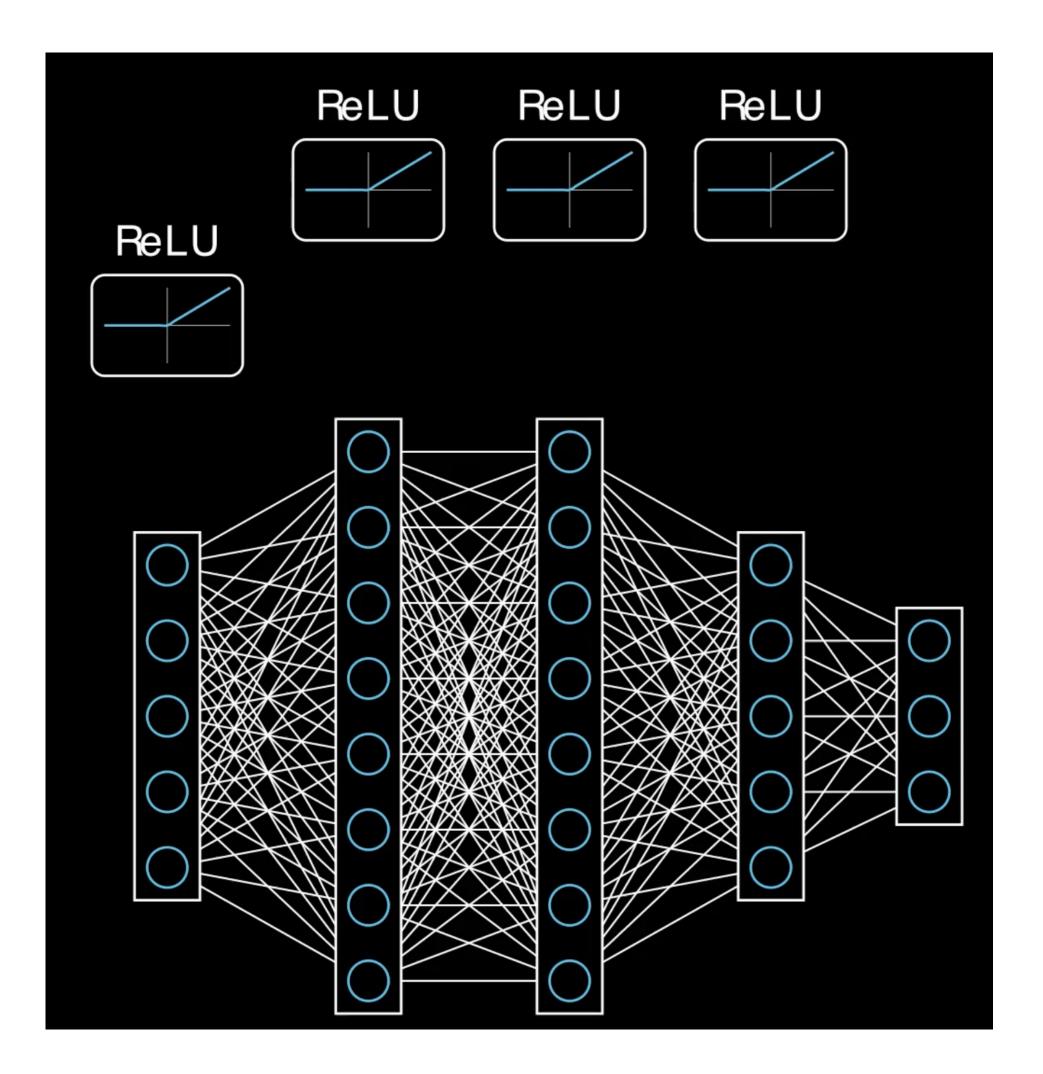
We can do classification in several ways **Soft decisions (probabilistic) Input Data** Prob. of label given data p(y|x) $\boldsymbol{\chi}$



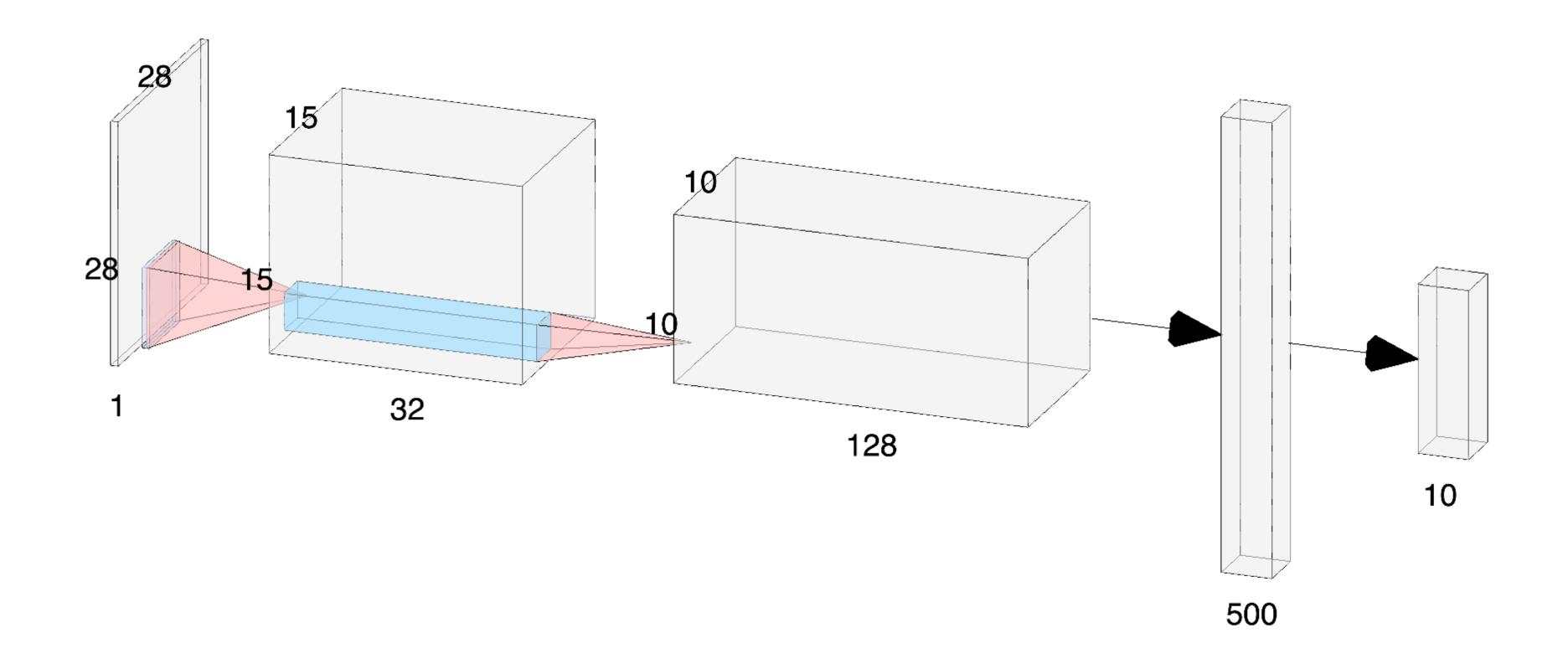
Classifier

Dog: 0.45 Bird: 0.55

How do we get soft decisions? Use the representation instead of a final decision

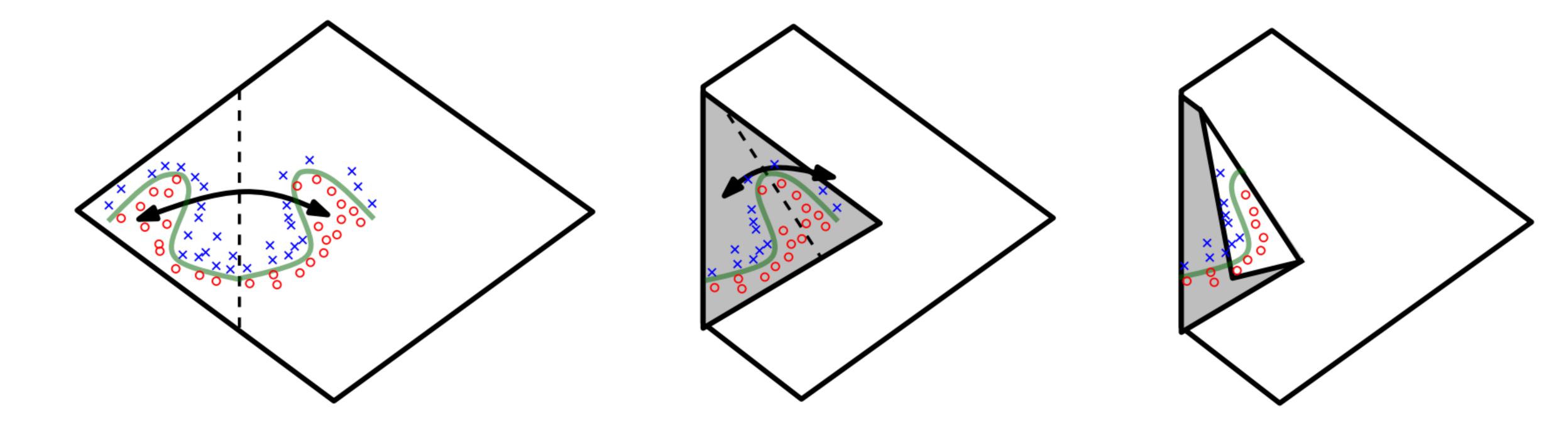


How do we get soft decisions? Use the representation instead of a final decision



Reminder: Representation Learning

Neural networks use non-linear transformations to deform data



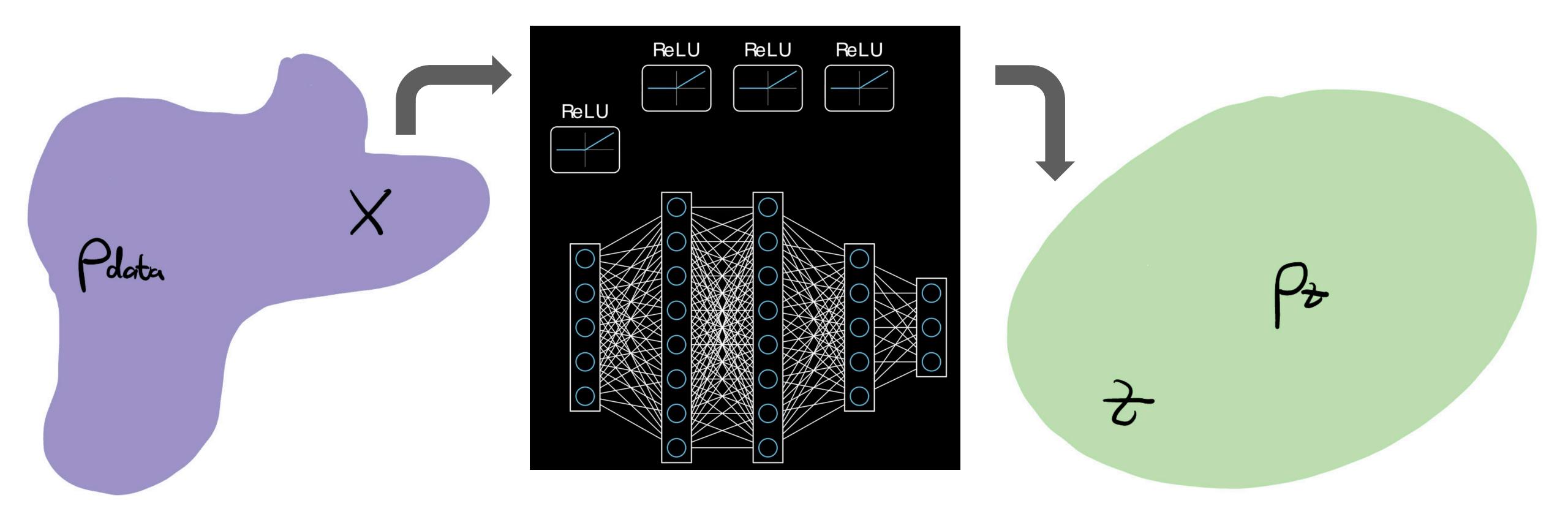
Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, Yoshua Bengio. On the Number of Linear Regions of **Deep Neural Networks** Arxiv (2014)

Reminder: Representation Learning

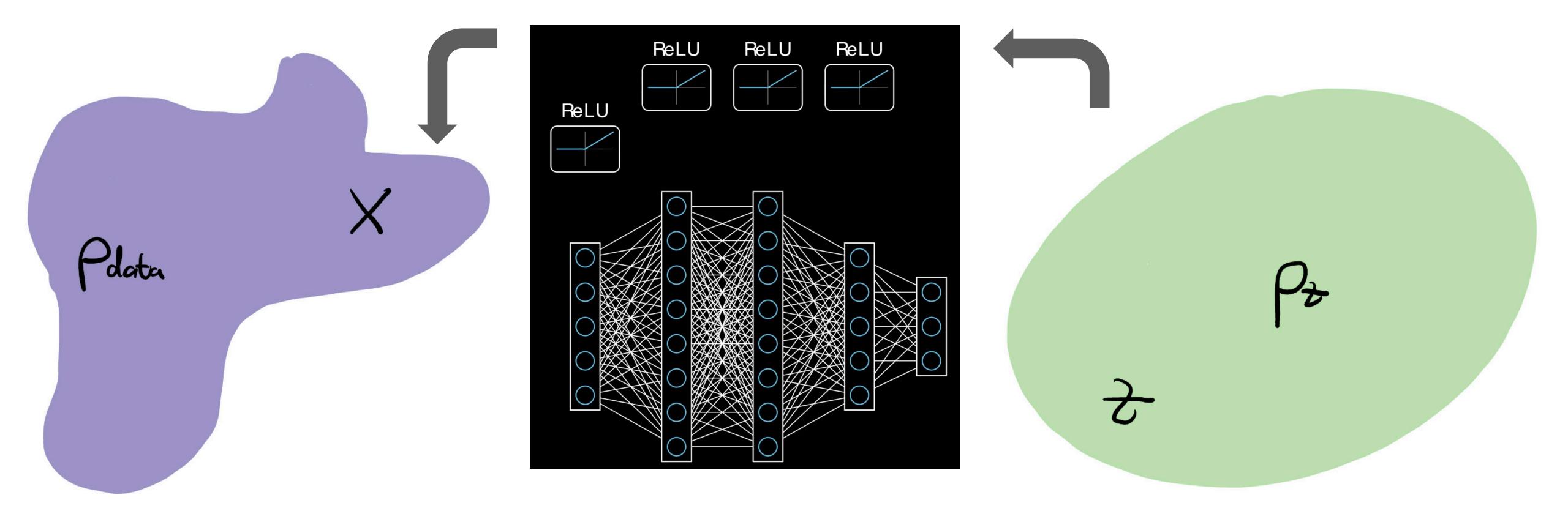
Neural networks use non-linear transformations to deform data



Reminder: Representation Learning Neural networks use non-linear transformations to deform data



Generative Modelling: Turn it around! Go from a representation to a data distribution



Why is generative modelling interesting?

1. Sample new datapoints

2. Evaluate likelihood of samples

Unconditional vs Conditional Models

Every probabilistic model is in some sense a generative model

Conditional Model

- Supervised learning
- Observe x,y pairs
- learn p(y|x)
- Ex: regression, classification

Unconditional Model

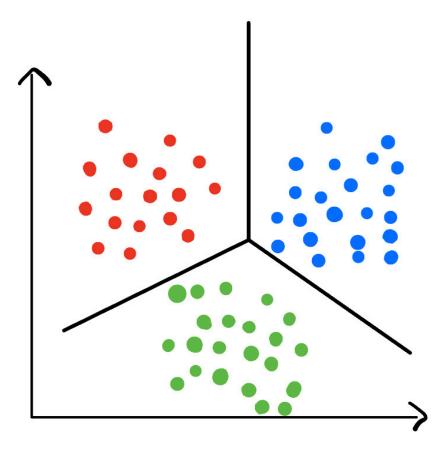
- Unsupervised learning
- Observe only data x, no labels
- learn p(x)
- Ex: density estimation, dim.red.

Unconditional vs Conditional Models

Every probabilistic model is in some sense a generative model

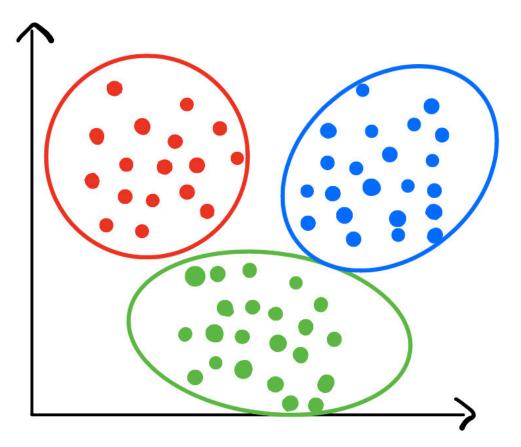
Conditional Model

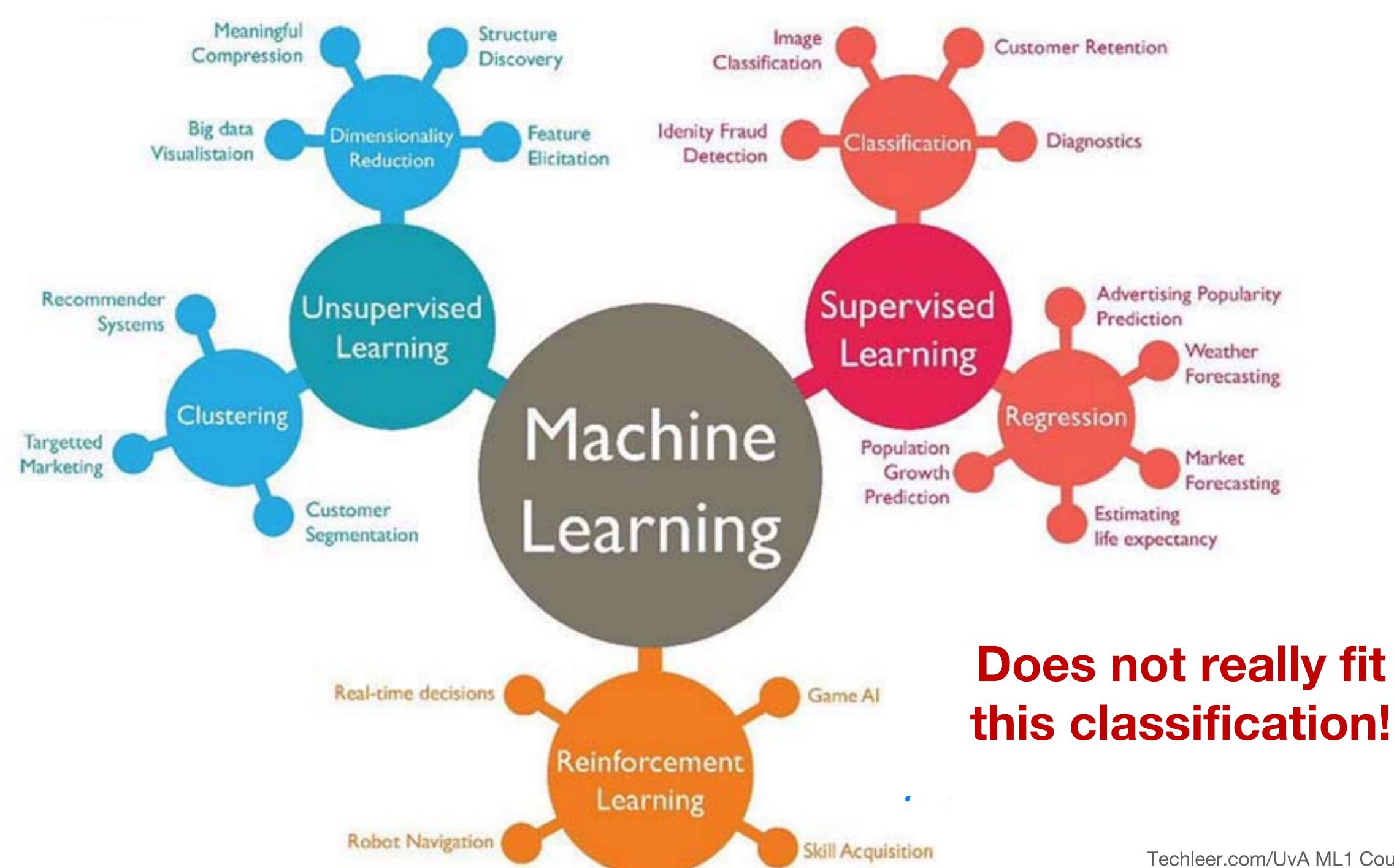
- Supervised learning
- Observe x,y pairs
- learn p(y|x)
- Ex: regression, classification



Unconditional Model

- Unsupervised learning
- Observe only data x, no labels
- learn p(x)
- Ex: density estimation, dim.red.

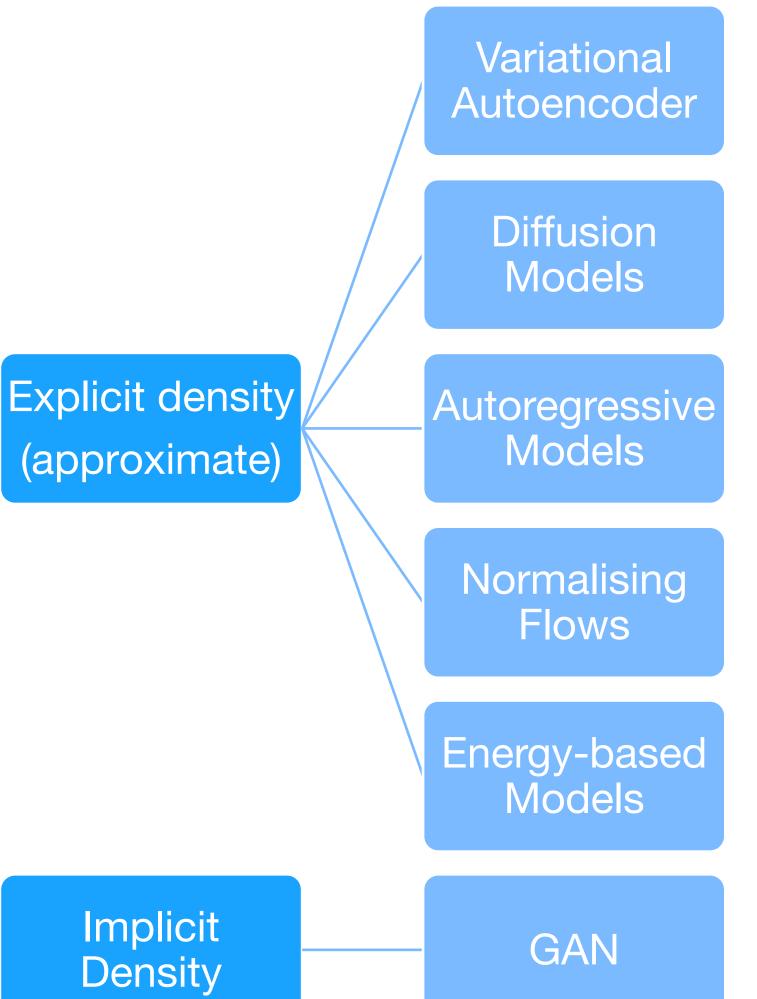




Techleer.com/UvA ML1 Course

How to represent p(x)? **Approximate Density Models dominate recently**

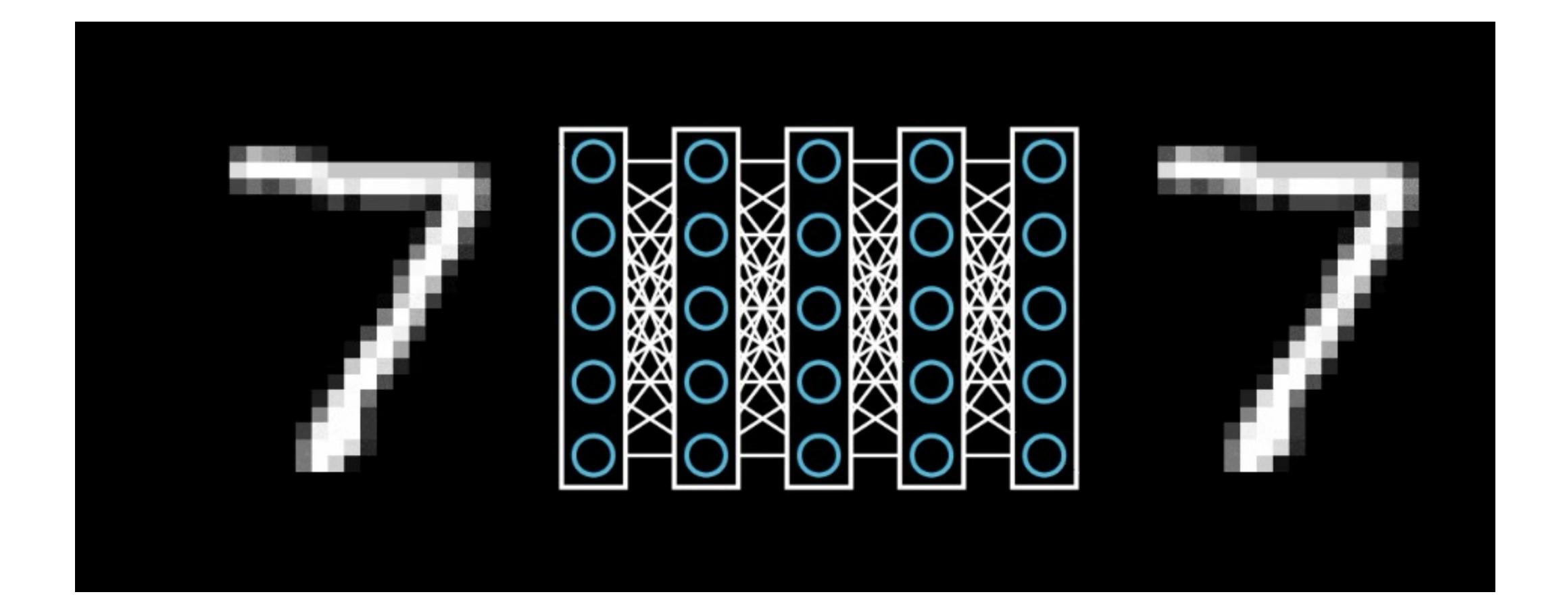
Generative Models

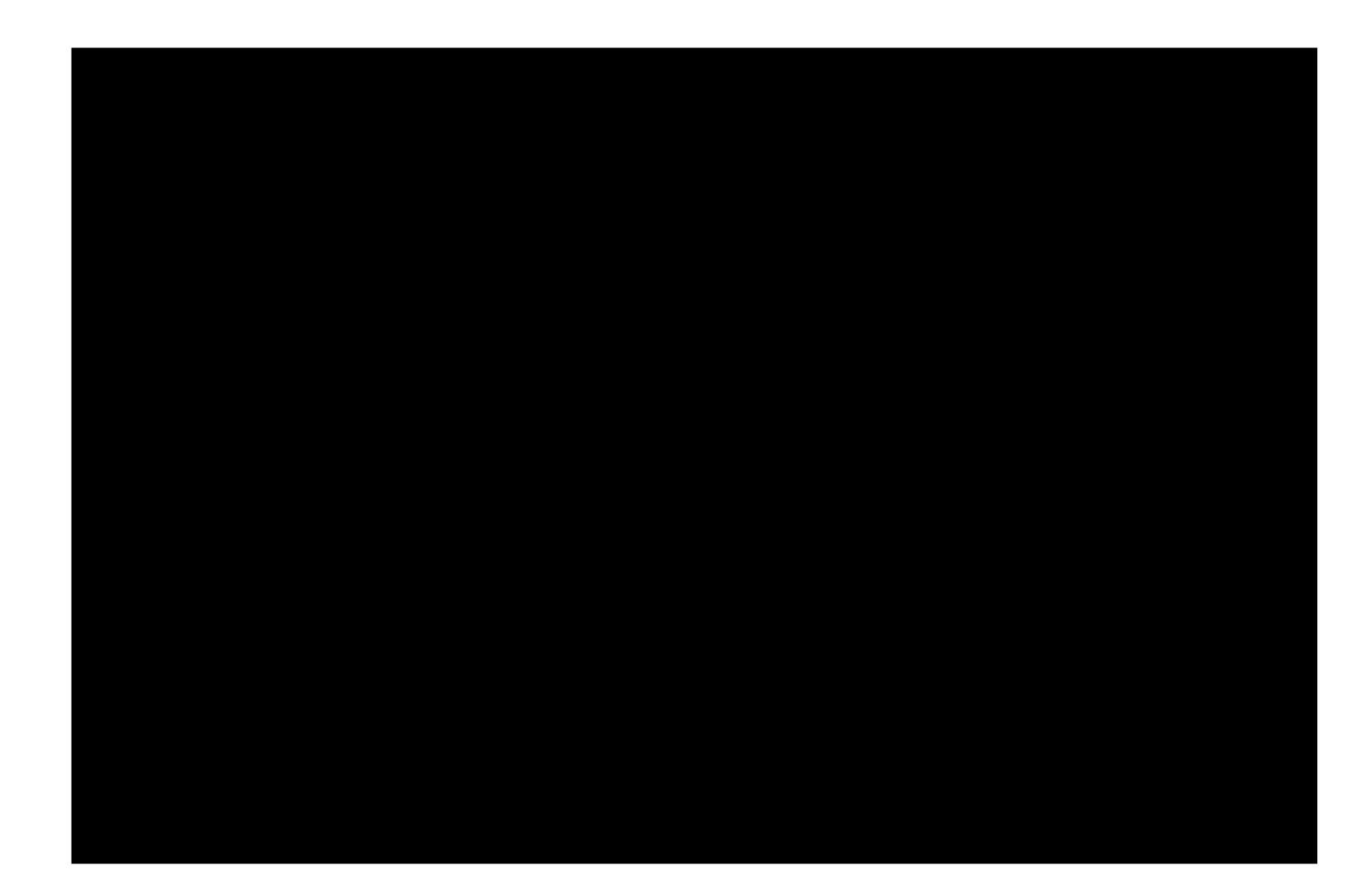


2. (Variational) Autoencoders

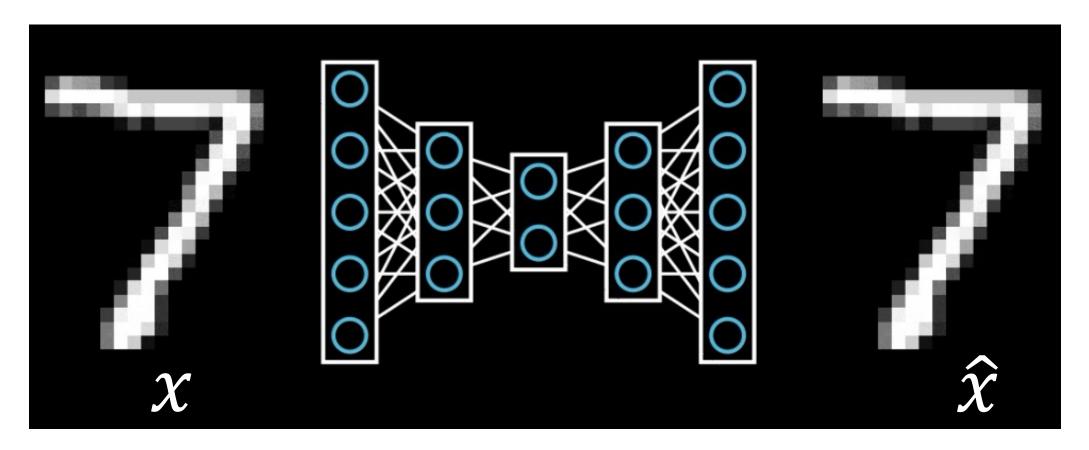
How to use unlabelled data for learning? Think of interesting tasks that just involve the data itself

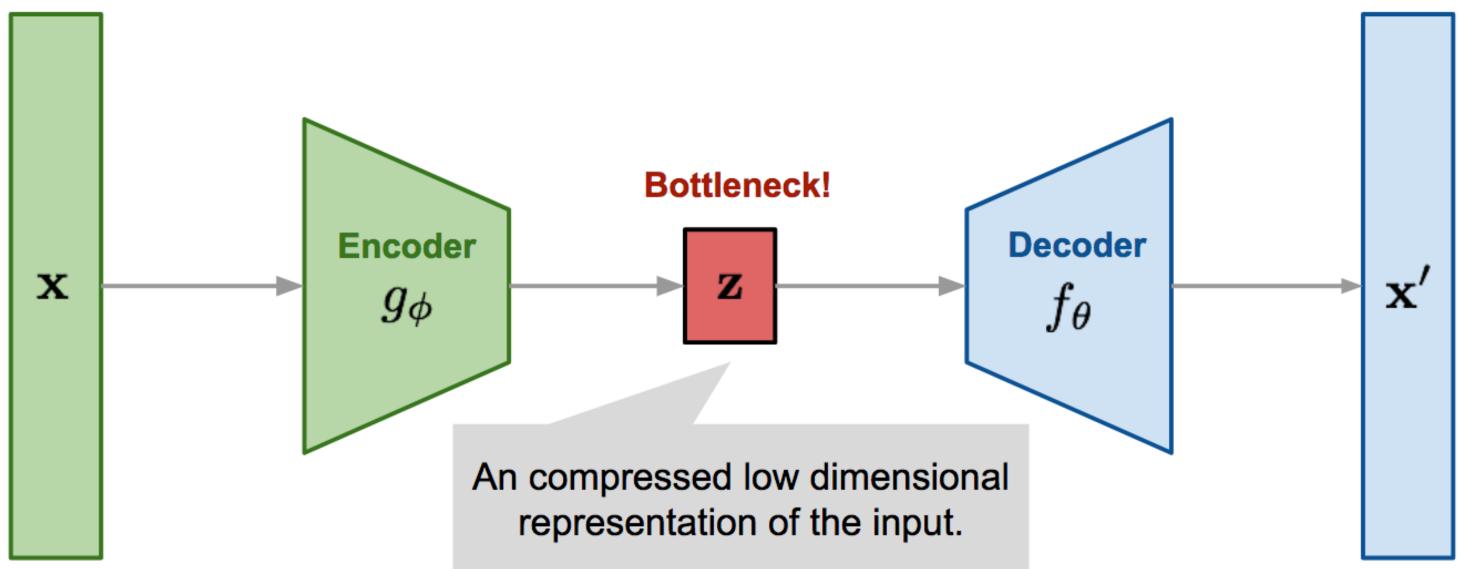
How to use unlabelled data for learning? Think of interesting tasks that just involve the data itself





Autoencoders: introduce a bottleneck Learn by penalizing a reconstruction error

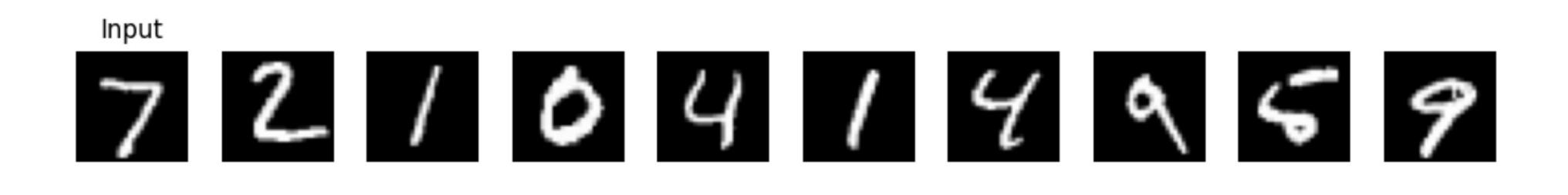




 $\mathcal{L}(x,\hat{x}) = \left| |x - \hat{x}| \right|^2$

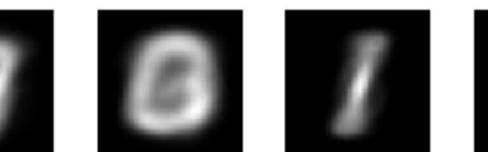


(a) Autoencoder encodes 8-dimensional toy data as binary code.

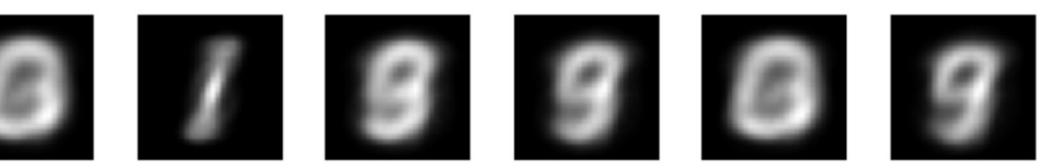


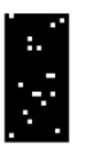
Hidden

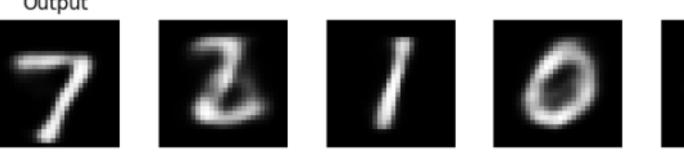
Output



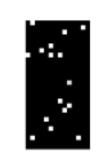
(b) Autoencoder learns compressed version of MNIST digits (50 hidden units).

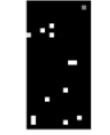




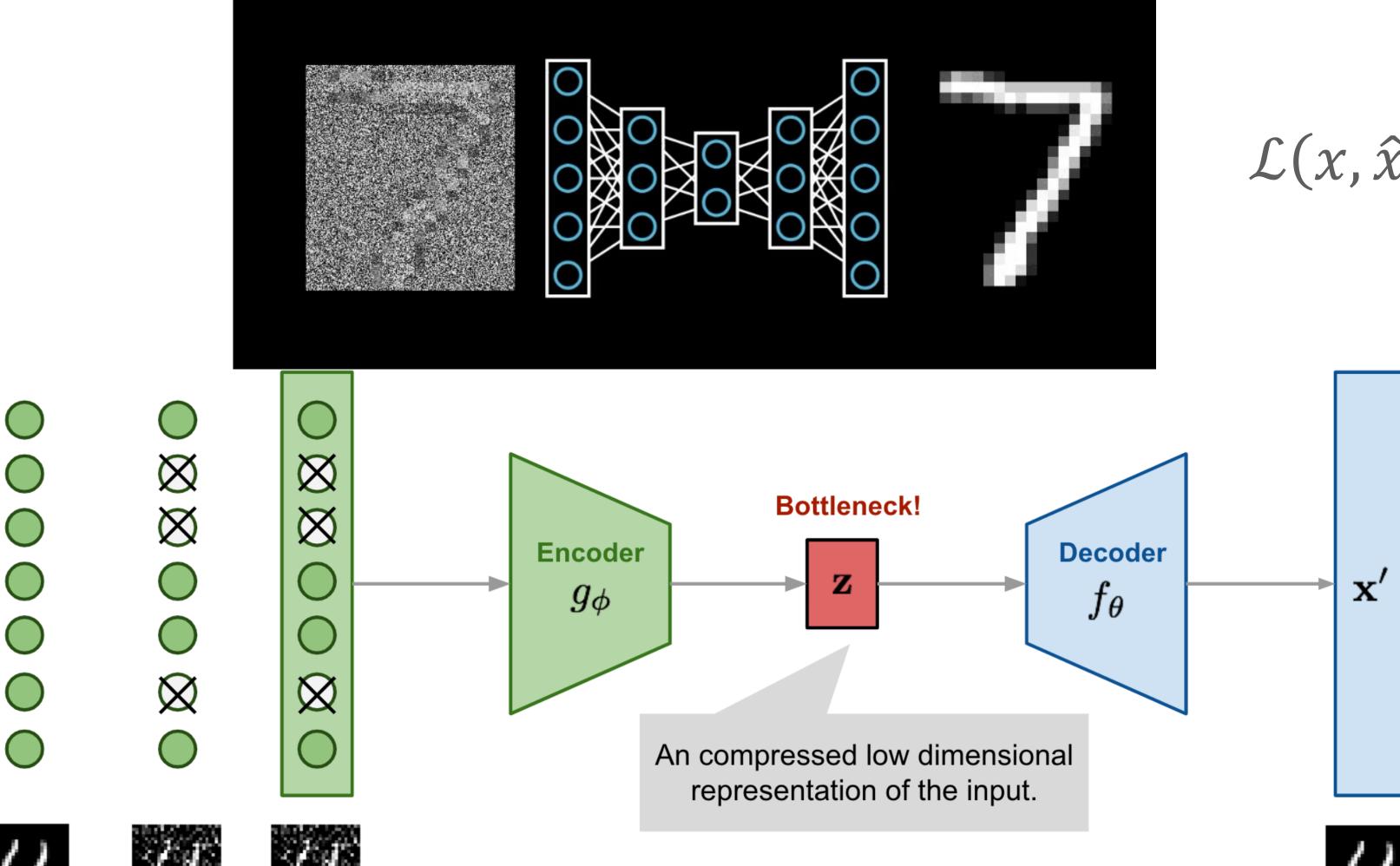


(c) More hidden units (here 392) allow the autoencoder to learn a more accurate latent representation.



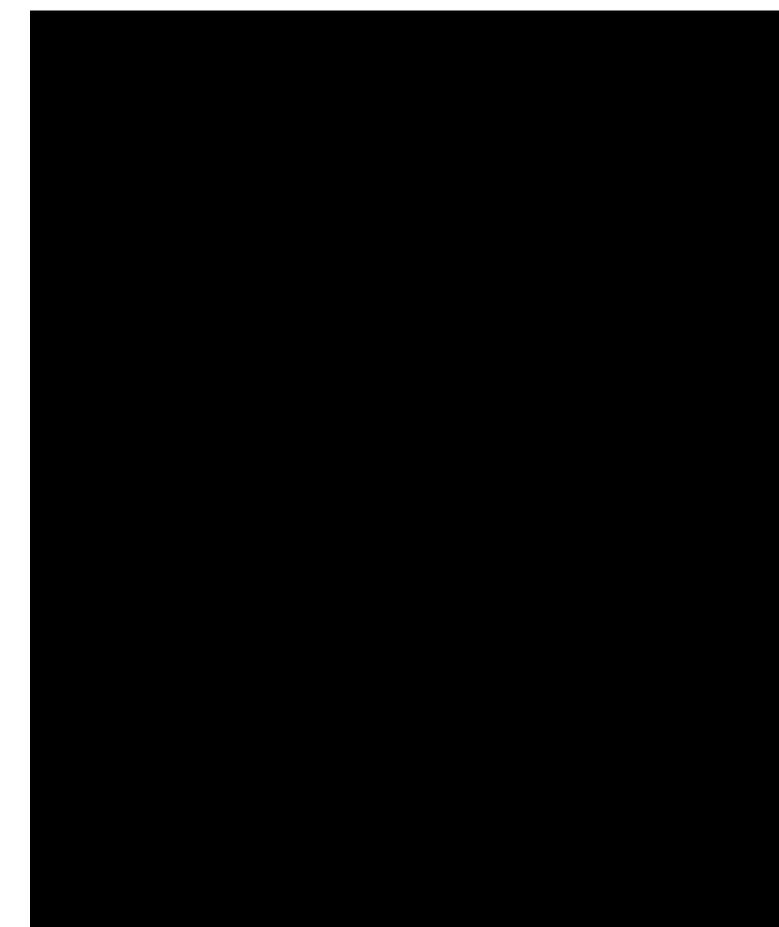


Denoising Autoencoder Make the task harder via noisy input

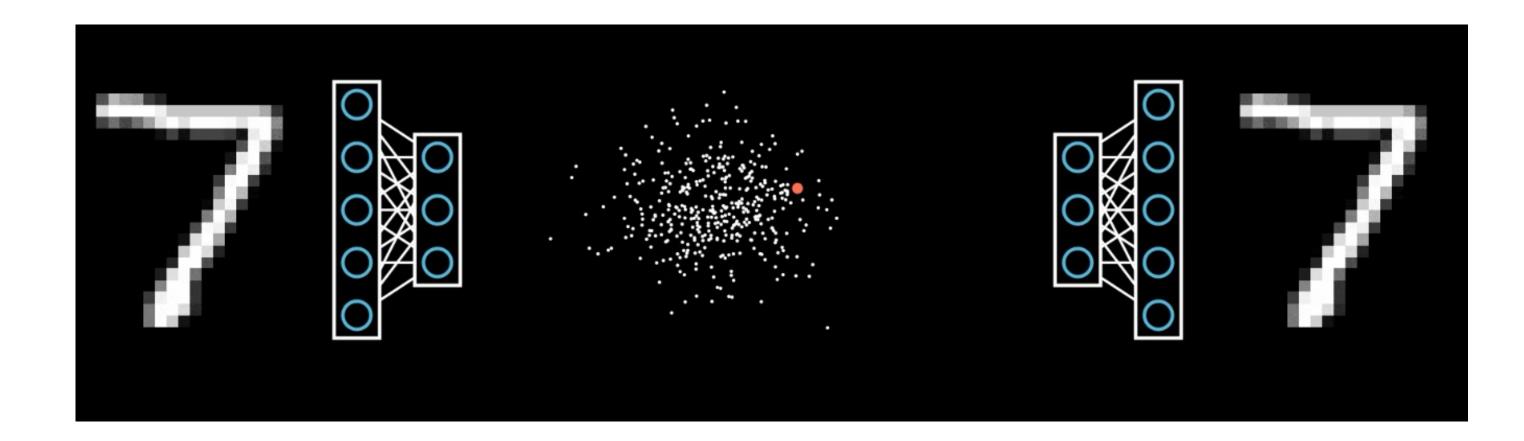


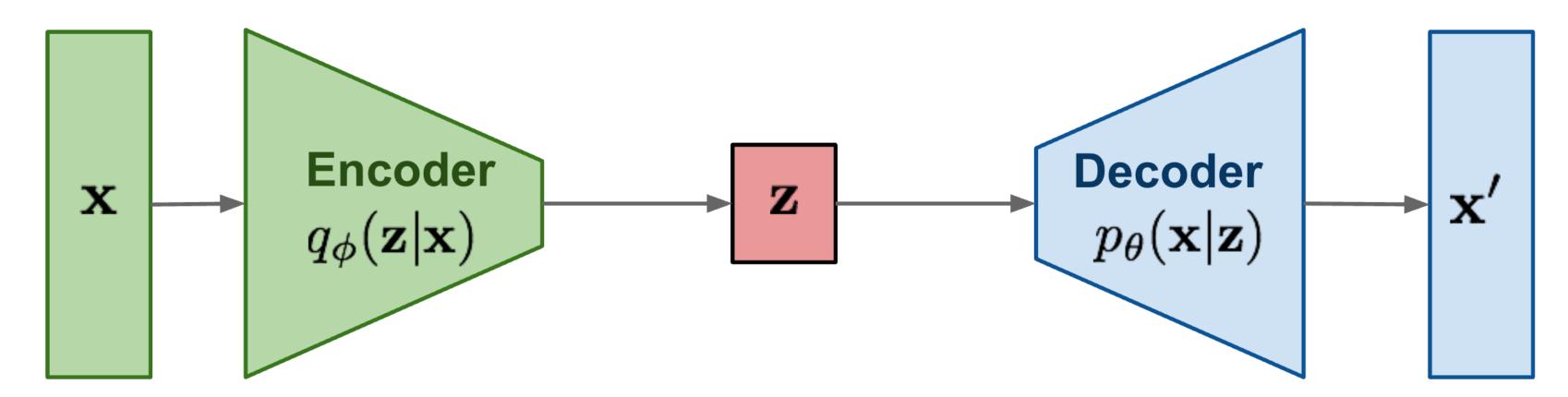
 $\mathcal{L}(x,\hat{x}) = \left| |x - \hat{x}| \right|^2$

Variational Autoencoder Enforce a simple latent distribution via an extra loss term



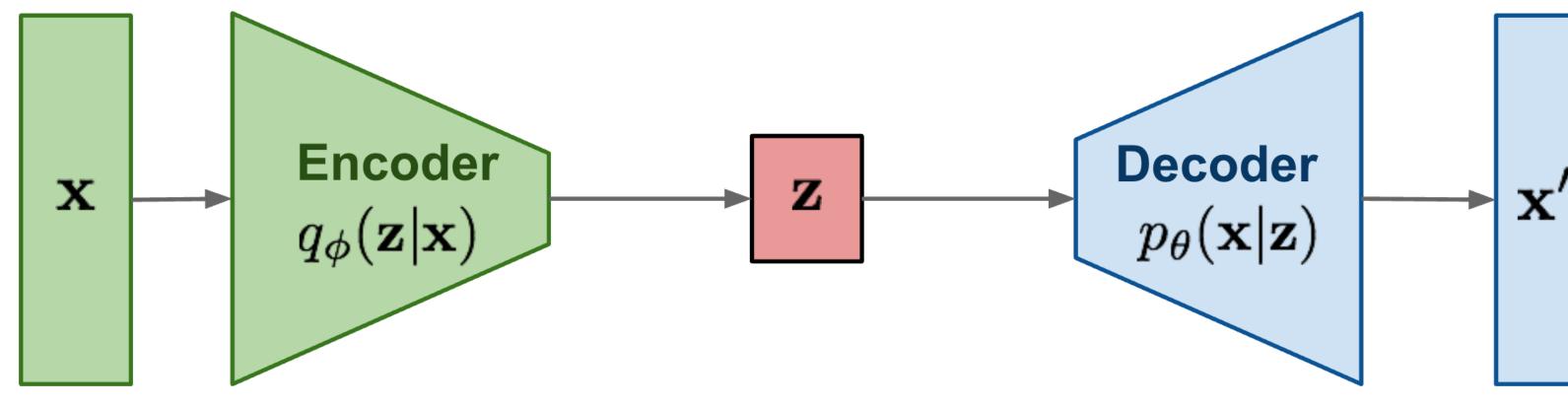
Variational Autoencoder **Enforce a simple latent distribution via an extra loss term**





Variational Autoencoder Enforce a simple latent distribution via an extra loss term

VAE: maximize variational lower bound

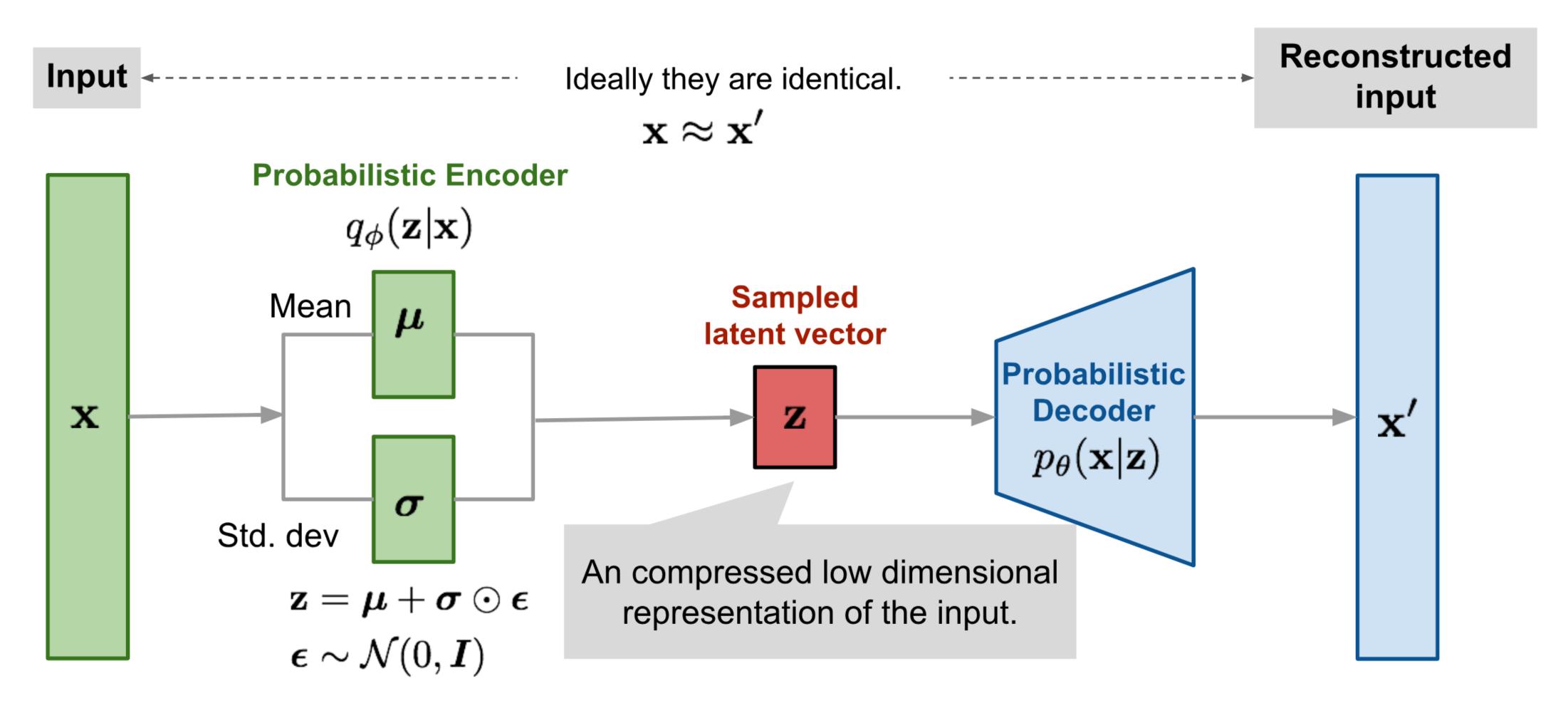


$$egin{aligned} &L_{ ext{VAE}}(heta,\phi) = -\log p_ heta(\mathbf{x}) + D_{ ext{K}} \ &= -\mathbb{E}_{\mathbf{z}\sim q_\phi(\mathbf{z}|\mathbf{x})}\log p_ heta \ & heta^*, \phi^* = rg\min_{ heta,\phi} L_{ ext{VAE}} \end{aligned}$$

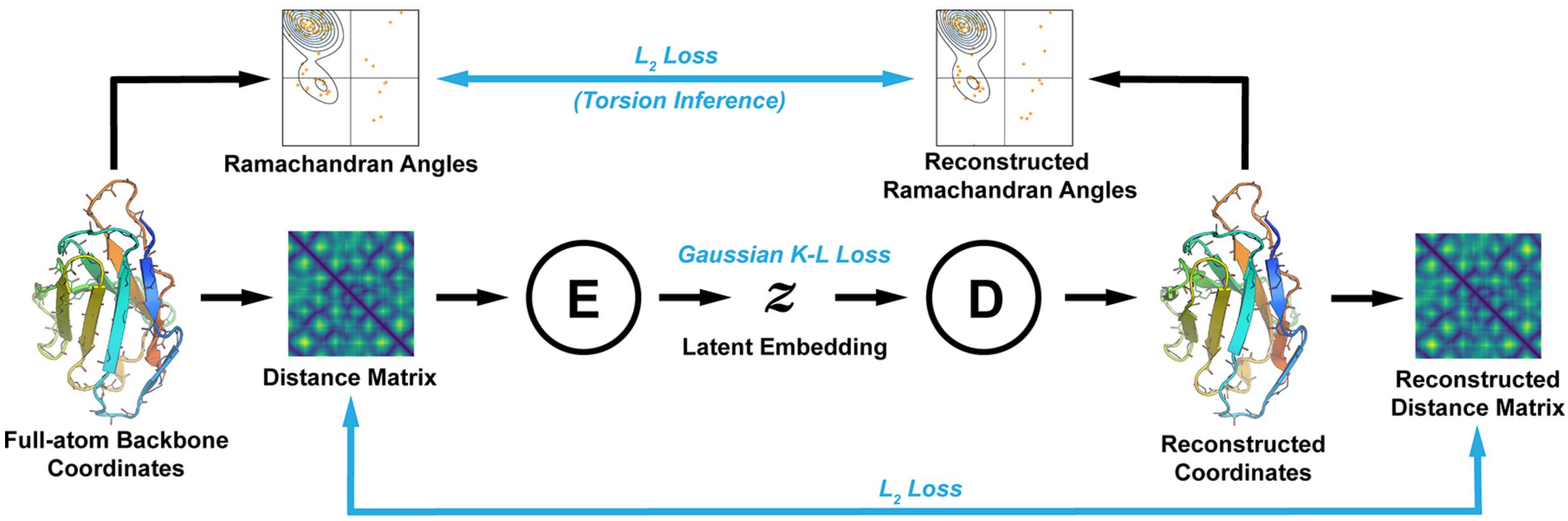
$\sum_{\mathrm{L}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p_{ heta}(\mathbf{z}|\mathbf{x}))$ $(\mathbf{x}|\mathbf{z}) + D_{ ext{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{ heta}(\mathbf{z}))$

Variational Autoencoder

Enforce a simple latent distribution via an extra loss term

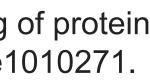


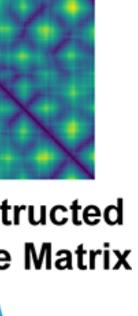
VAEs: Applications Antibody Design (IgVAE)



(Distance Matrix Reconstruction)

Eguchi, Raphael R., Christian A. Choe, and Po-Ssu Huang. "Ig-VAE: Generative modeling of protein structure by direct 3D coordinate generation." PLoS computational biology 18.6 (2022): e1010271.

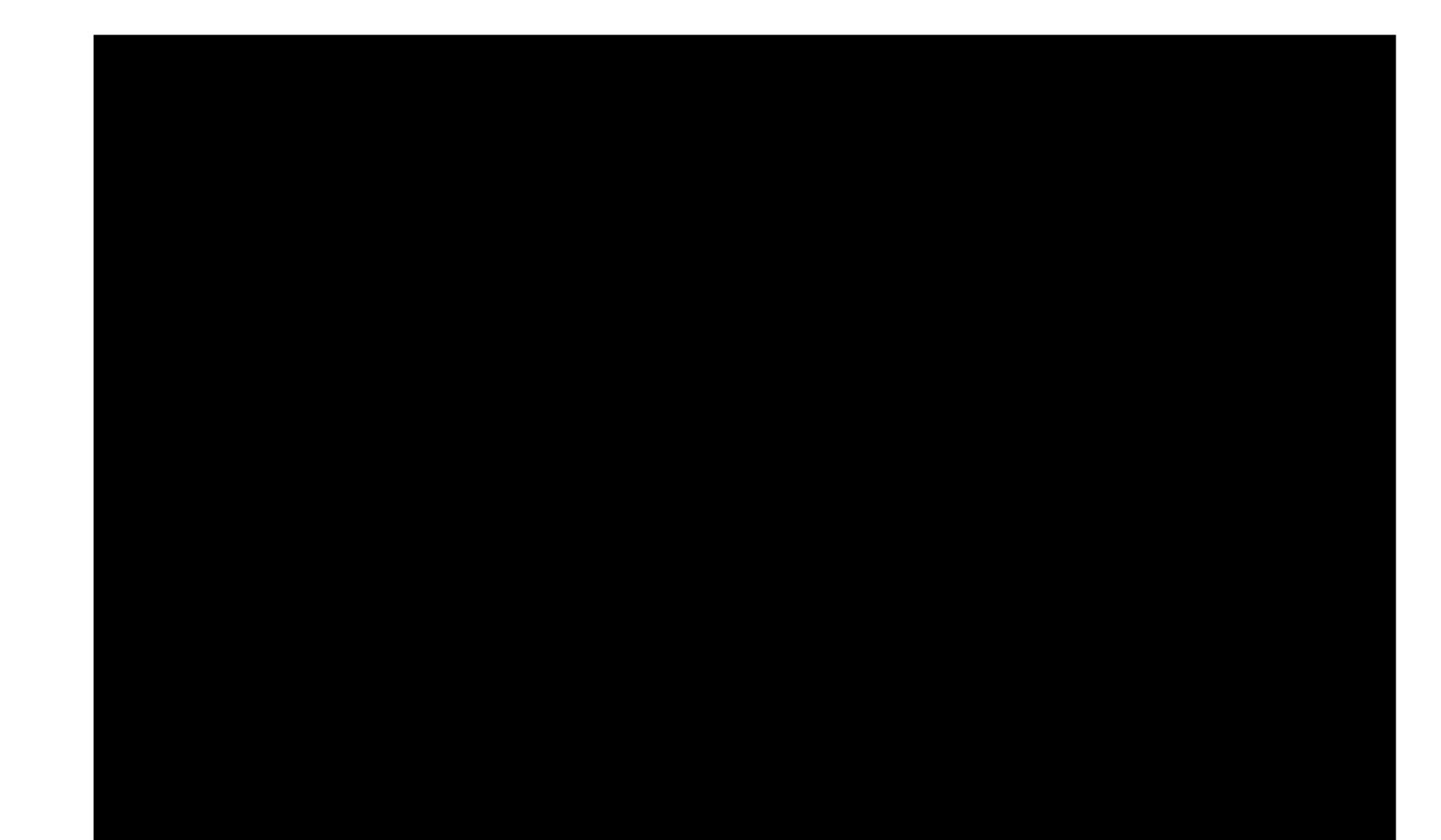




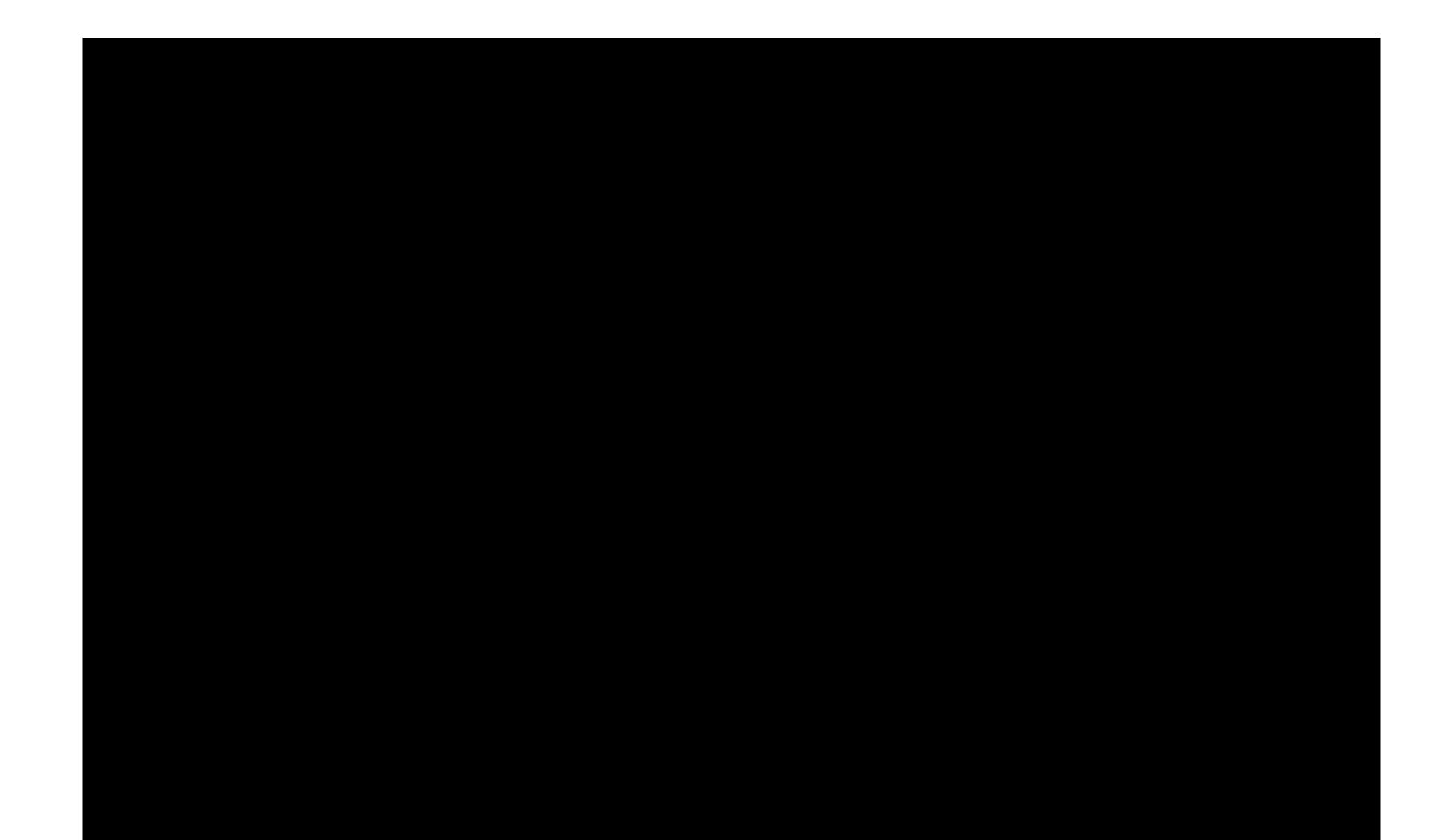
3. Diffusion Models

"Creating noise from data is easy; creating data from noise is generative modelling." — Yang Song

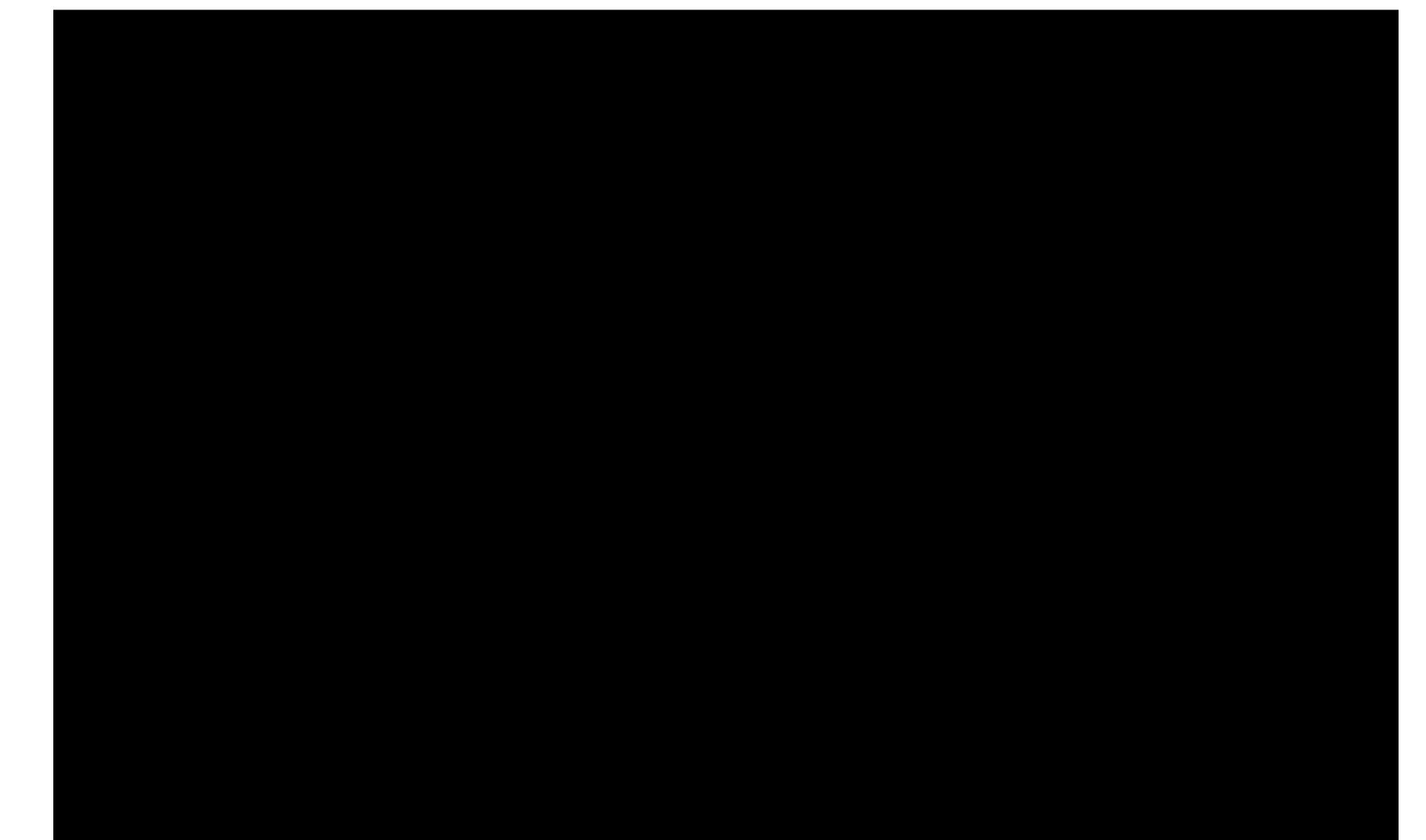
No bottleneck, but a sequence of noising steps



Diffusion Models Task: given noise level and noised image, predict denoised image



Task: given noise level and noised image, predict denoised image



Diffusion Models Level 1: Mapping noise back to data

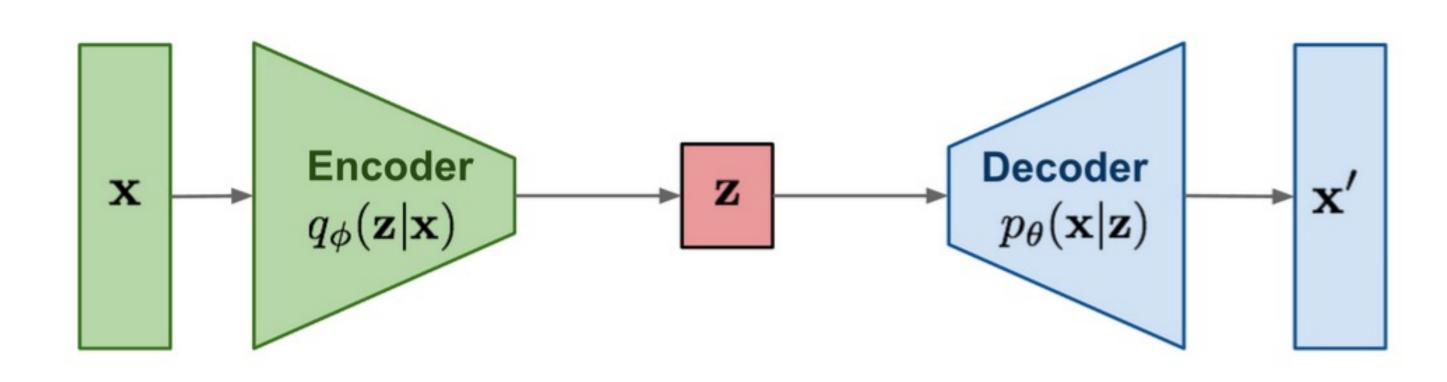
simple destructive process slowly maps data to noise

Diffusion model is trained to map noise back to data

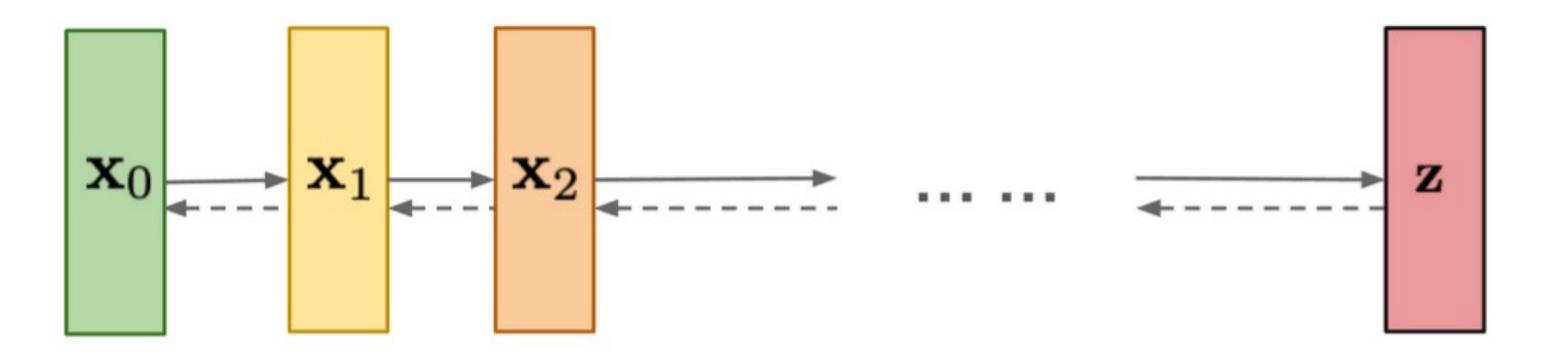
Google Research, 2022 & Beyond: Language, Vision and Generative Models (Google Research)

Level 1: Mapping noise back to data

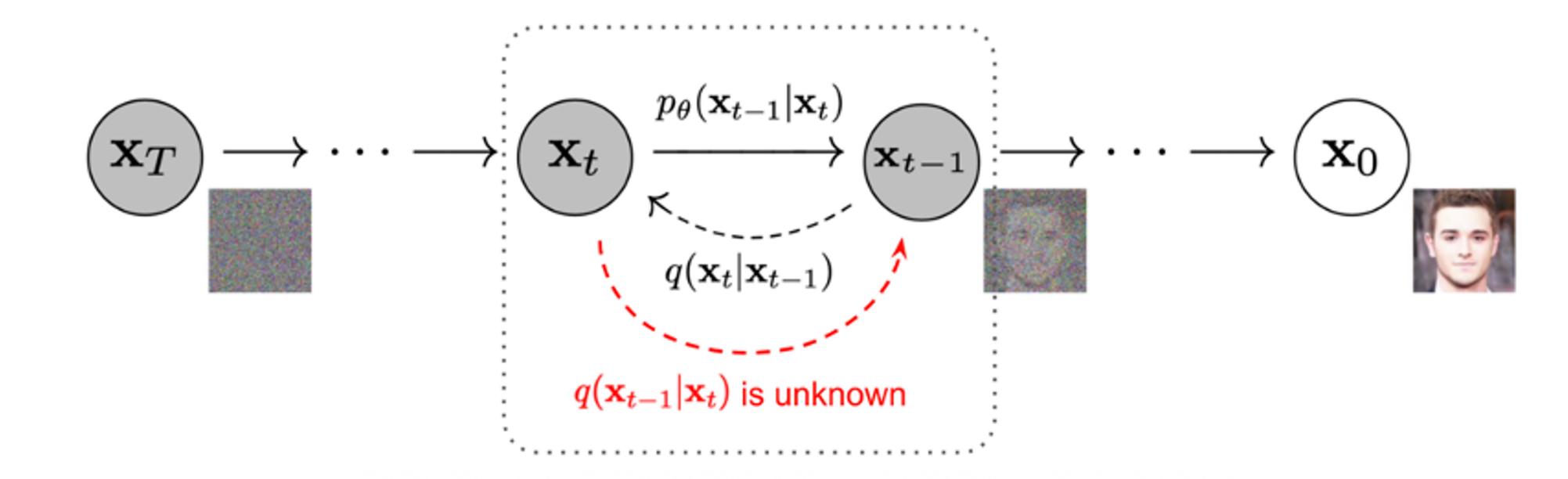
VAE: maximize variational lower bound



Diffusion models: Gradually add Gaussian noise and then reverse



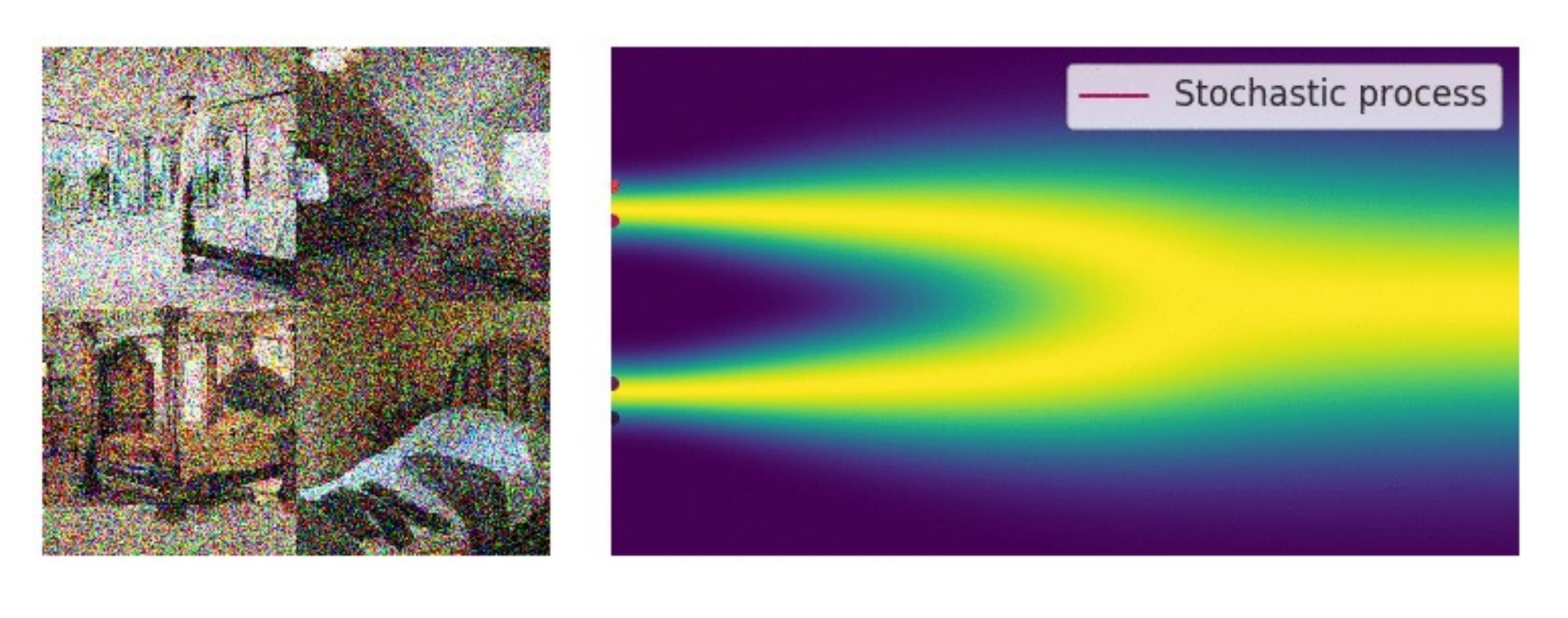
Level 2: Each noising step is Gaussian



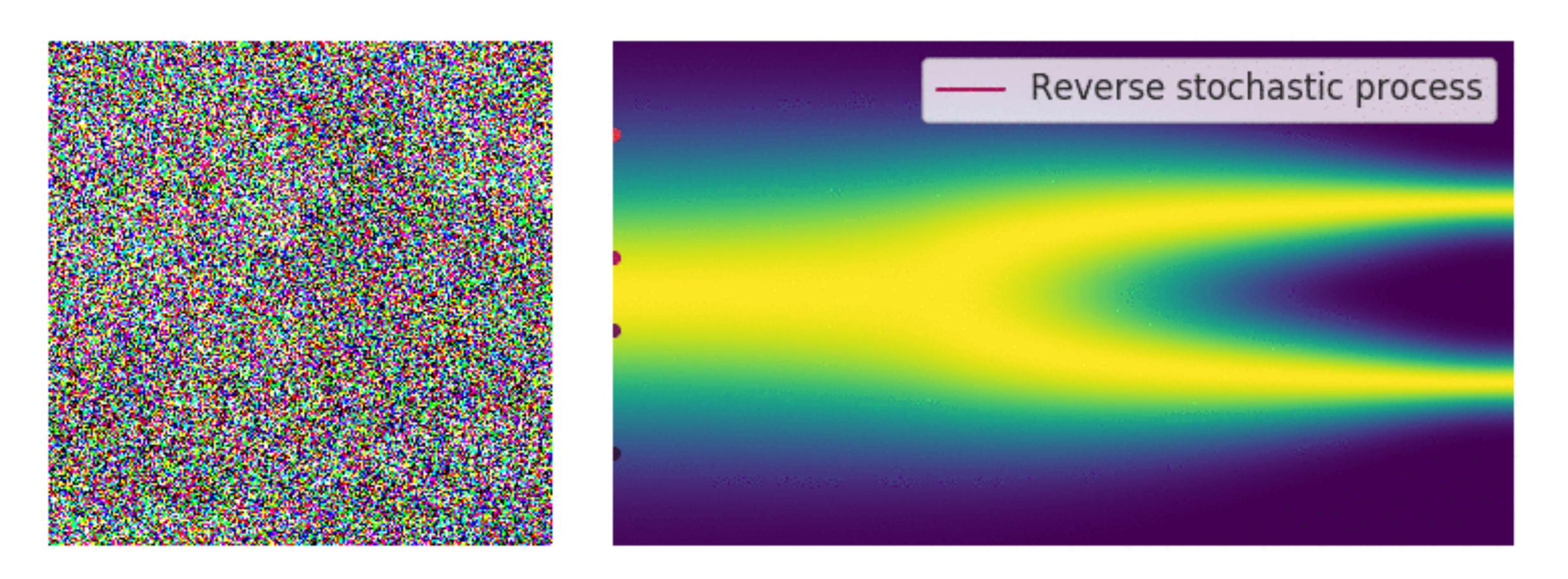
Forward Diffusion: $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t \mathbf{x}_{t-1}}, \beta_t \mathbf{I})$

Reverse Diffusion: $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$

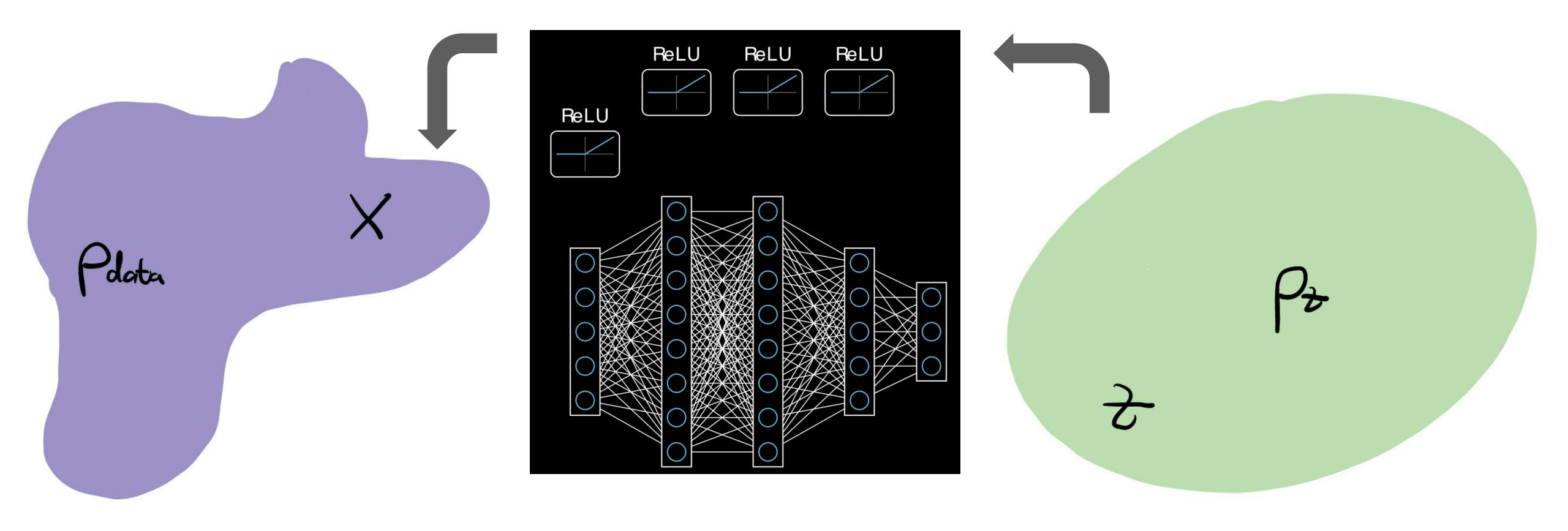
Diffusion Models Forward Process = Noising to a reference distribution



Diffusion Models Reverse Process: Denoising to our target distribution



Reverse Process: Denoising to our target distribution



Loss Function of Diffusion Models In theory: very similar to the VAE loss

Intuition: Encourage the model to maximise the expected density applied to the data

 $L_{VLB} = \mathbb{E}_q[\log p_{\theta}(\boldsymbol{x_0}|\boldsymbol{x_T})] - \sum_{t=1}^{T} D_{\mathrm{KL}}(q(\boldsymbol{x_t}|\boldsymbol{x_0}) \parallel p_{\theta}(\boldsymbol{x_t}))$ t=1

> **Intuition:** Encourage the learned posterior to be similar to the prior latent variable

Loss Function of Diffusion Models In practice: simpler objectives work better

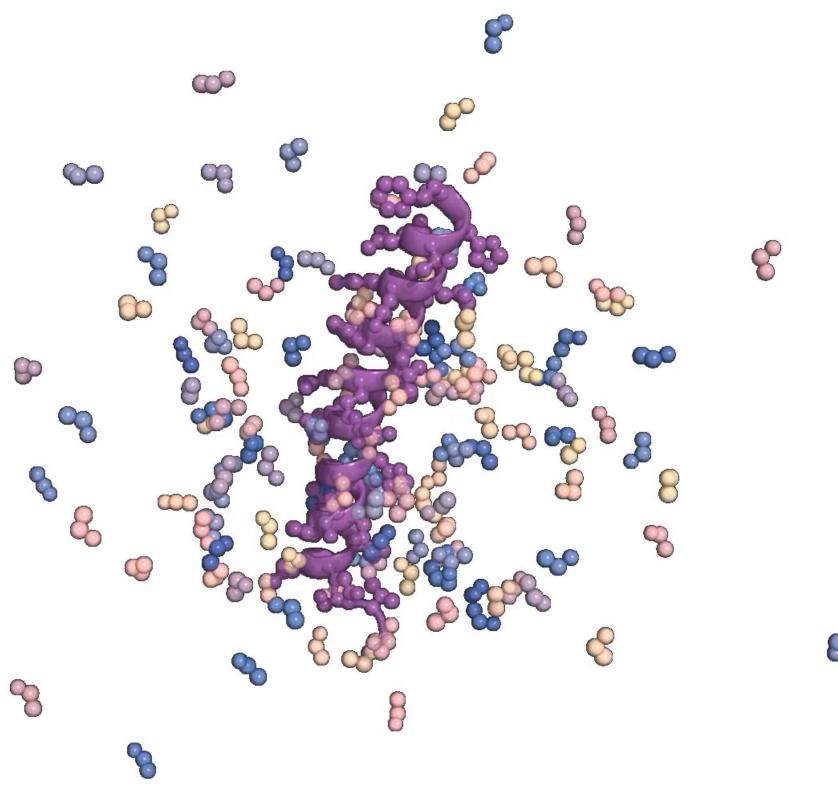
 $L_t^{ ext{simple}} = \mathbb{E}_{t \sim [1,T], \mathbf{x}_0, oldsymbol{\epsilon}_t}$

$$_{t_{t}} \Big[\|oldsymbol{\epsilon}_{t} - oldsymbol{\epsilon}_{ heta}(\mathbf{x}_{t},t)\|^{2} \Big]$$

4. Applications and Outlook

RFDiffusion

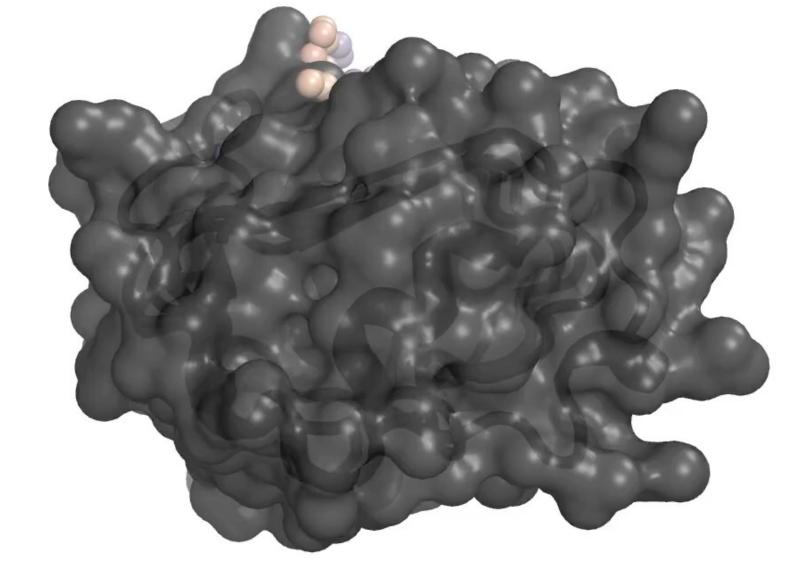
Designing new proteins



80

RFDiffusion

Designing new proteins



We can condition a generative backbone model such that a pre-specified motif is present, while retaining realistic, novel samples.

